Skip to main content

Advertisement

Log in

A network analysis of plant–pollinator interactions in temperate rain forests of Chiloé Island, Chile

  • Plant-Animal Interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

This study characterizes the structure of a plant–pollinator network in a temperate rain forest of Chiloé Island, southern Chile, where woody species are strongly dependent on biotic pollinators, and analyzes its robustness to the loss of participating species. Degree distribution, nestedness, and expected species persistence were evaluated. In addition, we assessed the roles of predefined subsets of plants (classified by life forms) and pollinators (grouped by taxonomic orders) in the network’s structure and dynamics. For this, we simulated the complete removal of each plant and pollinator subset and analyzed the resultant connectivity patterns, as well as the expected long-term species losses by running a stochastic model. Finally, we evaluated the sensitivity of the network structure to the loss of single species in order to identify potential targets for conservation. Our results show that the plant–pollinator network of this Chilean temperate rain forest exhibits a nested structure of interactions, with a degree distribution best described by a power law model. Model simulations revealed the importance of trees and hymenopterans as pivotal groups that maintain the core structure of the pollination network and guarantee overall species persistence. The hymenopterans Bombus dahlbomii and Diphaglossa gayi, the shrubs Tepualia stipularis and Ugni molinae, the vines Mitraria coccinea and Asteranthera ovata, and the entire set of tree species exerted a disproportionately large influence on the preservation of network structure and should be considered as focal species for conservation programs given current threats from selective logging and habitat loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualisms in the woody flora of the temperate forest of southern South America: biogeographical origin and present ecological significance. Ecol Aust (Argentina) 8:217–236

    Google Scholar 

  • Aizen MA, Vasquez DP, Smith-Ramírez C (2002) Historia natural y conservación de los mutualismos planta-animal del bosque templado de Sudamérica austral. Rev Chil Hist Nat 75:79–97

    Article  Google Scholar 

  • Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  • Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  PubMed  CAS  Google Scholar 

  • Amaral LA, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. PNAS 97:11149–11152

    Article  PubMed  CAS  Google Scholar 

  • Aravena JC, Carmona M, Perez C, Armesto JJ (2002) Changes in tree species richness, stand structure and soil properties in a successional chronosequence in northern Chiloé Island. Chile Rev Chil Hist Nat 75:339–360

    Google Scholar 

  • Armesto JJ, Rozzi R (1989) Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest. J Biogeogr 16:219–226

    Article  Google Scholar 

  • Armesto JJ, Smith-Ramírez C, Sabag C (1996) The importance of plant-bird mutualism in the temperate rainforest of southern South America. In: Lawford RG, Alaback PB, Fuentes E (eds) High latitude rain forests and associated ecosystems of the west coast of the Americas: climate, hydrology, ecology and conservation. Springer, Berlin, pp 248–265

    Google Scholar 

  • Arroyo MTK, Hoffman AE (1997) Temperate rain forest of Chile. In: Davis SD, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity, vol 3. The Americas. World Wildlife Fund and International Union for Conservation of Nature, New York, pp 542–548

    Google Scholar 

  • Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. PNAS 100:9383–9387

    Article  PubMed  CAS  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  PubMed  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Soc Meth Res 33:261–304

    Article  Google Scholar 

  • Díaz IA, Armesto JJ, Reid S, Sieving KE, Willson MF (2005) Linking forest structure and composition: avian diversity in successional forests of Chiloé Island. Chile Biol Conserv 123:91–101

    Article  Google Scholar 

  • Dinerstein E, Olson DM, Graham DJ, Webster AL, Primm SA, Bookinder MP, Ledec G (1995) Una evaluación del estado de conservación de las ecorregiones terrestres de América Latina y el Caribe. Banco Mundial, World Wildlife Fund

  • Dunne JA, Williams RJ, Martínez ND (2002a) Food-web structure and network theory: the role of connectance and size. PNAS 99:2917–12922

    Article  CAS  Google Scholar 

  • Dunne JA, Williams RJ, Martínez ND (2002b) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Figueroa J, Armesto JJ, Hernández JF (1996) Estrategias de germinación y latencia de semillas en especies del bosque templado de Chiloé. Chile Rev Chil Hist Nat 69:243–251

    Google Scholar 

  • Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant–animal mutualistic networks. Ecol Lett 9:281–286

    Article  PubMed  Google Scholar 

  • Guimarães PR, Guimarães P (2006) Improving the analyses of nestedness for large sets of matrices. Environ Modell Softw 21:1512–1513

    Article  Google Scholar 

  • Heywood VH (1995) Global biodiversity assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Marquet PA, Fernández M, Navarrete SA, Valdovinos C (2004) Diversity emerging: toward a deconstruction of biodiversity patterns. In: Lomolino M, Heaney LR (eds) Frontiers of biogeography: new directions in the geography of nature. Sinauer Associates, Massachusetts, pp 191–209

    Google Scholar 

  • Martinez ND (1992) Constant connectance in community food webs. Am Nat 139:1208–1218

    Article  Google Scholar 

  • Memmott J (1999) The structure of a plant–pollinator food web. Ecol Lett 2:276–280

    Article  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B Biol Sci 271:2605–2611

    Article  Google Scholar 

  • Montoya JM, Solé RV (2003) Topological properties of food webs: from real data to community assembly models. Oikos 102:614–622

    Article  Google Scholar 

  • Myers N, Mittermeier RA, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  Google Scholar 

  • Newman MEJ (2005) Power laws, Pareto distributions and Zipf’s law. Contemp Phys 46:323–351

    Article  Google Scholar 

  • Newton A (2007) Biodiversity loss and conservation in fragmented forest landscapes: evidence from Mexican montane forests and the temperate rainforests of South America. CABI, UK

    Google Scholar 

  • Pascual M, Dunne JA (2006) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, UK

    Google Scholar 

  • Riveros M, Humaña AM, Lanfranco D (1991) Actividad de los polinizadores en el Parque Nacional Puyehue, X Región, Chile. Medio Ambiente (Chile) 11:5–12

    Google Scholar 

  • Rodríguez-Gironés MA, Santamaría L (2006) A new algorithm to calculate the nestedness temperature of presence–absence matrices. J Biogeogr 33:924–935

    Article  Google Scholar 

  • Santamaría L, Rodríguez-Gironés MA (2007) Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol 5:e31. doi:10.1371/journal.pbio.0050031

    Article  PubMed  CAS  Google Scholar 

  • Smith-Ramírez C, Armesto JJ (1994) Flowering and fruiting patterns in the temperate rainforest of Chiloé, Chile—ecologies and climatic contraints. J Ecol 82:353–365

    Article  Google Scholar 

  • Smith-Ramírez C, Martínez P, Nuñez M, González C, Armesto JJ (2005) Diversity, flower visitation frequency, and generalism of pollinators in temperate rain forests of Chiloe island. Chile Bot J Linn Soc 147:399–416

    Article  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  PubMed  CAS  Google Scholar 

  • Valdovinos FS, Ramos-Jiliberto R, Flores JD, Espinoza C, López G (2009) Structure and dynamics of pollination networks: the role of alien plants. Oikos (in press). doi:10.1111/j.1600-0706.2009.17364.x

  • Vázquez DP (2005) Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions? Oikos 108:421–426

    Article  Google Scholar 

  • Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant–pollinator interactions. Ecology 85:1251–1257

    Article  Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. D. Flores for his valuable help in scientific computing, M. A. Fortuna for his help with the dynamic model, M. A. Rodríguez-Gironés for specially implementing a batch version of his software BINMATNEST, and M. Franco for improving the readability of this paper. All the experiments and sampling comply with the current laws of the country (Chile) in which they were performed. Work started by an Endowed Presidential Chair in Sciences to J. J. A. We acknowledge support from FONDAP–FONDECYT 1501-0001, P05-002 ICM and PFB-23 CONICYT, Chile. This is a contribution to the research program of Senda Darwin Biological Station, Chiloé, Chile. We appreciate the company and assistance in the field of M. Nuñez-Ávila, L. Suárez, P. Martínez and el Negro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ramos-Jiliberto.

Additional information

Communicated by Miguel Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos-Jiliberto, R., Albornoz, A.A., Valdovinos, F.S. et al. A network analysis of plant–pollinator interactions in temperate rain forests of Chiloé Island, Chile. Oecologia 160, 697–706 (2009). https://doi.org/10.1007/s00442-009-1344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1344-7

Keywords

Navigation