Skip to main content

Advertisement

Log in

Interactions between a detrital resource pulse and a detritivore community

  • Community Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Detritivore communities influence the decomposition of detrital resources in virtually all natural systems. Conversely, detrital resources can also have considerable bottom-up effects on detritivore communities. While many investigations have examined detritivory and decomposition processes, few have considered interactions between detritivores and detritus as concurrent processes in the same system, or in the context of natural detrital pulses. In many systems, resource pulses contribute substantial detrital inputs to belowground systems. These detrital pulses may influence interactions between the detritivore community and detrital decomposition. I conducted field experiments to investigate interactions between detrital resource pulses of periodical cicada (Magicicada spp.) carcasses and scavenging detritivorous macroarthropods. Cicada litterfall pulses influenced several broad groups in the macroarthropod community, including relatively specialized necrophilous taxa and relatively generalized detritivores, omnivores and predators. Conversely, detritivore activity increased the rate of cicada carcass decomposition by 4,082% compared to caged control carcasses. These results suggest that interactions between pulses of cicada detritus and the detritivore community influence both the persistence of ephemeral detrital resources, and the distribution, abundance and behavior of detritivore populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archer MS (2003) Annual variation in arrival and departure times of carrion insects at carcasses: implications for succession studies in forensic entomology. Aust J Zool 51:569–576

    Article  Google Scholar 

  • Arnett RH, Thomas MC (2001) American beetles. CRC, Boca Raton

    Google Scholar 

  • Ashmole MJ, Ashmole NP (1987) Arthropod communities supported by biological fallout on recent lava flows in the Canary Islands. Entomol Scand 32:67–88

    Google Scholar 

  • Ashmole NP, Nelson JM, Shaw MR, Garside A (1983) Insects and spiders on snowfields in the Cairngorms, Scotland. J Nat Hist 17:599–613

    Article  Google Scholar 

  • Baars MA (1979) Catches in pitfall traps in relation to mean densities of carabid beetles. Oecologia 41:25–46

    Article  Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng WX, Coleman DC, Crossley DA (1992) Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecol Monogr 62:569–591

    Article  Google Scholar 

  • Ben-David M, Hanley TA, Schell DM (1998) Fertilization of terrestrial vegetation by spawning Pacific salmon: the role of flooding and predator activity. Oikos 83:47–55

    Article  CAS  Google Scholar 

  • Bengtsson J, Setala H, Zheng D (1996) Food webs and nutrient cycling in soils: interactions and positive feedbacks. In: Polis G, Winemiller K (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, London

    Google Scholar 

  • Blockstein DE (2002) Passenger pigeon: ectopistes migratorius. In: Birds of North America national council for science and environment, Washington, DC, pp 1–27

  • Bohac J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372

    Article  Google Scholar 

  • Borror DJ, Triplehorn CA, Johnson NF (1989) An introduction to the study of insects. Harcourt Brace & Co., Orlando

    Google Scholar 

  • Brown JJ, Chippendale GM (1973) Nature and fate of the nutrient reserves of the periodical (17 Year) cicada. J Insect Physiol 19:607–614

    Article  CAS  Google Scholar 

  • Chen B, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772

    Google Scholar 

  • Chen B, Wise DH (1997) Responses of forest-floor fungivores to experimental food enhancement. Pedobiologia 41:316–326

    Google Scholar 

  • Coleman DC (1996) Energetics of detritivory and microbivory in soil in theory and practice. In: Polis G, Winemiller K (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, London

    Google Scholar 

  • Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35:124–129

    Article  Google Scholar 

  • Curran LM, Leighton M (2000) Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol Monogr 70:101–128

    Google Scholar 

  • Doube BM (1987) Spatial and temporal organization in communities associated with dung pads and carcasses. In: Gee JHR, Giller PS (eds) Organization of communities. Past and Present Blackwell Scientific Publications, Oxford, pp 255–280

    Google Scholar 

  • Dybas HS, Davis DD (1962) A population census of seventeen-year periodical cicadas (Homoptera: Cicadidae: Magicicada). Ecology 43:432–444

    Article  Google Scholar 

  • Dybas HS, Lloyd M (1974) The habitats of 17-year periodical cicadas (Homoptera: Cicadidae: Magicicada spp.). Ecol Monogr 44:279–324

    Article  Google Scholar 

  • Edwards CA, Reichle DE, Crossley DA Jr (1970) The role of soil invertebrates in turnover of organic matter and nutrients. In: Reichle DE (ed) Ecological studies I. Analysis of temperate forest ecosystems. Springer, Berlin, Heidelberg, New York, pp 147–172

    Google Scholar 

  • Edwards JS (1986) Derelicts of dispersal: arthropod fallout on Pacific Northwest Volcanoes. In: Danthanarayana W (ed) Insect flight: dispersal and migration. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Edwards JS (1987) Arthropods of alpine aeolian ecosystems. Ann Rev Entomol 32:163–179

    Article  Google Scholar 

  • Edwards JS (1988) Life in the allobiosphere. Trend Ecol Evol 3:111–114

    Article  Google Scholar 

  • Edwards JS, Sugg P (1993) Arthropod fallout as a resource in the recolonization of Mount St Helens. Ecology 74:954–958

    Article  Google Scholar 

  • Ericson D (1979) Interpretation of pitfall catches of Pterostichus-Cupreus and Pterostichus-Melanarius (Coleoptera, Carabidae) in cereal fields. Pedobiologia 19:320–328

    Google Scholar 

  • Fellers GM, Fellers JH (1982) Scavenging rates of invertebrates in an Eastern deciduous forest. Am Midl Nat 107:389–392

    Article  Google Scholar 

  • Hairston N, Smith F, Slobodkin L (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Hanski I (1987) Nutritional ecology of dung- and carrion-feeding insects. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. Wiley, USA, pp 837–884

    Google Scholar 

  • Harris RJ (2001) A primer of multivariate statistics. Academic, New York

    Google Scholar 

  • Hastings A (2004) Transients: the key to long-term ecological understanding? Trend Ecol Evol 19:39–45

    Article  Google Scholar 

  • Helfield JM, Naiman RJ (2003) Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity: reply. Ecology 84:3399–3401

    Article  Google Scholar 

  • Iman RL, Conover WJ (1979) Use of the rank transform in regression. Technometrics 21:499–509

    Article  Google Scholar 

  • Jeanne RL (1979) A latitudinal gradient in rates of ant predation. Ecology 60:1211–1224

    Article  Google Scholar 

  • Karban R (1982) Increased reproductive success at high densities and predator satiation for periodical cicadas. Ecology 63:321–328

    Article  Google Scholar 

  • Karban R (1983) Sexual selection, body size and sex-related mortality in the cicada Magicicada-Cassini. Am Midl Nat 109:324–330

    Article  Google Scholar 

  • Karban R (1984) Opposite density effects of nymphal and adult mortality for periodical cicadas. Ecology 65:1656–1661

    Article  Google Scholar 

  • Kitchell JF, O’Neill RV, Webb D, Gallep GW, Bartell SM, Koonce JF, Ausmus BS (1979) Consumer regulation of nutrient cycling. BioScience 29:28–34

    Article  Google Scholar 

  • Lodge DJ, Mcdowell WH, Mcswiney CP (1994) The importance of nutrient pulses in tropical forests. Trend Ecol Evol 9:384–387

    Article  Google Scholar 

  • Lodge DJ, Scatena FN, Asbury CE, Sanchez MJ (1991) Fine litter fall and related nutrient inputs resulting from Hurricane Hugo in subtropical wet and lower mountain rain forests of Puerto Rico. Biotropica 23:336–342

    Article  Google Scholar 

  • Loreau M (1991) Species abundance patterns and the structure of ground-beetle communities. Ann Zool Fenn 28:49–56

    Google Scholar 

  • Lovei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Ann Rev Entomol 41:231–256

    CAS  Google Scholar 

  • Lovett GM, Ruesink AE (1995) Carbon and nitrogen mineralization from decomposing gypsy-moth Frass. Oecologia 104:133–138

    Article  Google Scholar 

  • Lussenhop J (1992) Mechanisms of microarthropod microbial interactions in soil. Adv Ecol Res 23:1–33

    Article  Google Scholar 

  • Marlatt CL (1907) The periodical cicada. Bull USDA Bureau Entomol 71:1–181

    Google Scholar 

  • McBrayer JF, Ferris JM, Metz LJ, Gist CS, Cornaby BW, Kitazawa Y, Kitazawa T, Wernz JG, Krantz GW, Jensen H (1977) Decomposer invertebrate populations in United-States forest biomes. Pedobiologia 17:89–96

    Google Scholar 

  • Minderman G (1968) Addition, decomposition and accumulation of organic matter in forests. J Ecol 56:355–362

    Article  Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, De Ruiter PC, Dong Q, Hastings A, Johnson NC, Mccann KS, Melville K, Morin PJ, Nadelhoffer K, Rosemond AD, Post DM, Sabo JL, Scow KM, Vanni MJ, Wall DH (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7:584–600

    Article  Google Scholar 

  • Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of microbiota and mesobiota in belowground detrital food webs. Ann Rev Entomol 33:419–439

    Google Scholar 

  • Nisbet RM, Diehl S, Wilson WG, Cooper SD, Donalson DD, Kratz K (1997) Primary-productivity gradients and short-term population dynamics in open systems. Ecological Monographs 67:535–553

    Article  Google Scholar 

  • Ostfeld RS, Keesing F (2000) Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trend Ecol Evol 15:232–237

    Article  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46:592–602

    Article  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman & Hall, London

    Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509

    Article  Google Scholar 

  • Retana J, Cerda X, Espadaler X (1991) Arthropod corpses in a temperate grassland—a limited supply. Holarctic Ecol 14:63–67

    Google Scholar 

  • Reynolds BC, Crossley DA, Hunter MD (2003) Response of soil invertebrates to forest canopy inputs along a productivity gradient. Pedobiologia 47:127–139

    Article  Google Scholar 

  • Rodenhouse NL, Bohlen PJ, Barrett GW (1997) Effects of woodland shape on the spatial distribution and density of 17-year periodical cicadas (Homoptera: Cicadidae). Am Midl Nat 137:124–135

    Article  Google Scholar 

  • Rosenheim JA (1990) Aerial prey caching by solitary ground-nesting wasps—a test of the predator defense hypothesis. J Insect Behav 3:241–250

    Article  Google Scholar 

  • Scheiner SM (2001) MANOVA: multiple response variables and multispecies interactions. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, New York, pp 99–115

    Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Article  Google Scholar 

  • Schoenly K, Reid W (1987) Dynamics of heterotrophic succession in carrion arthropod assemblages–discrete seres or a continuum of change. Oecologia 73:192–202

    Article  Google Scholar 

  • Sears A, Holt R, Polis G (2004) Feast and famine in food webs: the effects of pulsed productivity. In: Polis G, Power M, Huxel G (eds) Food webs at the landscape level. University Chicago Press, Chicago

    Google Scholar 

  • Seastedt TR (1984) The role of microarthropods in decomposition and mineralization processes. Ann Rev Entomol 29:25–46

    Article  Google Scholar 

  • Seastedt TR, Crossley DA (1984) The influence of arthropods on ecosystems. Bioscience 34:157–161

    Article  Google Scholar 

  • Seastedt TR, Mameli L, Gridley K (1981) Arthropod use of invertebrate carrion. Am Midl Nat 105:124–129

    Article  Google Scholar 

  • Seastedt TR, Tate CM (1981) Decomposition rates and nutrient contents of arthropod remains in forest litter. Ecology 62:13–19

    Article  CAS  Google Scholar 

  • Seber G (1984) Multivariate observations. Wiley, USA

    Google Scholar 

  • Setälä H (2002) Sensitivity of ecosystem functioning to changes in trophic structure, functional group composition and species diversity in belowground food webs. Ecol Res 17:207–215

    Article  Google Scholar 

  • Spalding JB (1979) Aeolian ecology of White Mountain Peak, California—windblown insect fauna. Arctic Alpine Res 11:83–94

    Article  Google Scholar 

  • Sugg PM, Edwards JS (1998) Pioneer aeolian community development on Pyroclastic flows after the eruption of Mount St Helens, Washington, USA. Arctic Alpine Res 30:400–407

    Article  Google Scholar 

  • Swan LW (1992) The aeolian biome. Bioscience 42:262–270

    Article  Google Scholar 

  • Sweeney BW, Vannote RL (1982) Population synchrony in mayflies—a predator satiation hypothesis. Evolution 36:810–821

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, California

    Google Scholar 

  • Toft S, Bilde T (2002) Carabid diets and food value. In: Holland J (ed) The agroecology of carabid beetles intercept. Andover, UK

    Google Scholar 

  • Topping CJ, Sunderland KD (1992) Limitations to the use of pitfall traps in ecological-studies exemplified by a study of spiders in a field of winter-wheat. J Appl Ecol 29:485–491

    Article  Google Scholar 

  • Tyndale-biscoe M, Vogt WG (1991) Effects of adding exotic dung beetles to native fauna on bush fly breeding in the field. Entomophaga 36:395–401

    Article  Google Scholar 

  • Tyndale-biscoe M, Vogt WG (1996) Population status of the bush fly, Musca vetustissima (Diptera: Muscidae), and native dung beetles (Coleoptera: Scarabaeinae) in South-Eastern Australia in relation to establishment of exotic dung beetles. Bull Entomol Res 86:183–192

    Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Vossbrinck CR, Coleman DC, Woolley TA (1979) Abiotic and biotic factors in litter decomposition in a semi-arid grassland. Ecology 60:265–271

    Article  CAS  Google Scholar 

  • Wall DH, Moore JC (1999) Interactions underground—soil biodiversity, mutualism, and ecosystem processes. Bioscience 49:109–117

    Article  Google Scholar 

  • Wallace MMH, Tyndale-biscoe M (1983) Attempts to measure the influence of dung beetles (Coleoptera, Scarabaeidae) on the field mortality of the bush fly Musca vetustissima Walker (Diptera, Muscidae) in Southeastern Australia. Bull Entomol Res 73:33–44

    Google Scholar 

  • Watson EJ, Carlton CE (2003) Spring succession of necrophilous insects on wildlife carcasses in Louisiana. J Med Entomol 40:338–347

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Williams KS, Smith KG (1992) Role of periodical cicadas homoptera cicadidae magicicada in forest nutrient cycles. Forest Ecol Manage 51:339–346

    Article  Google Scholar 

  • Whigham DF, Olmsted I, Cabrera Cano E, Harmon ME (1991) The impact of Hurricane Gilbert on trees, litterfall, and woody debris in a dry tropical forest in the northeastern Yucatan Peninsula. Biotropica 23[4]

  • Whiles MR, Callaham MA, Meyer CK, Brock BL, Charlton RE (2001) Emergence of periodical cicadas (Magicicada cassini) from a Kansas Riparian Forest: densities, biomass and nitrogen flux. Am Midl Nat 145:176–187

    Article  Google Scholar 

  • White J, Lloyd M, Zar JH (1979) Faulty eclosion in crowded suburban periodical cicadas—populations out of control. Ecology 60:305–315

    Article  Google Scholar 

  • Williams KS, Simon C (1995) The ecology, behavior, and evolution of periodical cicadas. Ann Rev Entomol 40:269–295

    Article  CAS  Google Scholar 

  • Williams KS, Smith KG, Stephen FM (1993) Emergence of 13-yr periodical cicadas (Cicadidae, Magicicada)—phenology, mortality, and predator satiation. Ecology 74:1143–1152

    Article  Google Scholar 

  • Yang LH (2004) Periodical cicadas as resource pulses in North American forests. Science 306:1565–1567

    Article  PubMed  CAS  Google Scholar 

  • Young OP (1984) Utilization of dead insects on the soil surface in row crop situations. Environ Entomol 13:1346–1351

    Google Scholar 

  • Zackrisson O, Nilsson MC, Jaderlund A, Wardle DA (1999) Nutritional effects of seed fall during mast years in Boreal forest. Oikos 84:17–26

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to R. Karban, J. Stamps, T. Schoener, J. Rosenheim, P. Ward, D. Strong, R. Kimsey, R. Bullard, J. Bastow, and D. Gruner for helpful comments and stimulating ideas. I also thank T. Bruce, T. Payne, M. Westbrook, E. Leonard, D. Carr, T. Roulston, R. Canterbury, D. Evans, A. Hester, M. Evans, S. Kreitman, L. Rieger, Kilmer Middle School, and Poe Middle School for assistance in the field. Thanks to M. Watnik and N. Willits for assistance with statistical analyses. I especially thank K. Will (UCB) and the Bohart Museum of Entomology (UCD) for help with several taxonomic identifications. The Jefferson National Forest (USDA Forest Service), Mountain Lake Biological Station (University of Virginia), Blandy Experimental Farm (University of Virginia), Concord University (Athens, WV), and Stonebridge Farm provided invaluable field site access and assistance. This research was supported by the Center for Population Biology (UCD), the UCD Entomology Department, the UCD Jastro-Shields program, the John Muir Institute (UCD), Sigma Xi, and the NSF Graduate Research Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louie H. Yang.

Additional information

Communicated by Oswald Schmitz

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L.H. Interactions between a detrital resource pulse and a detritivore community. Oecologia 147, 522–532 (2006). https://doi.org/10.1007/s00442-005-0276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0276-0

Keywords

Navigation