Skip to main content

Advertisement

Log in

Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system

  • Methods
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

White grubs (larvae of Coleoptera: Scarabaeidae) are abundant in below-ground systems and can cause considerable damage to a wide variety of crops by feeding on roots. White grub populations may be controlled by natural enemies, but the predator guild of the European species is barely known. Trophic interactions within soil food webs are difficult to study with conventional methods. Therefore, a polymerase chain reaction (PCR)-based approach was developed to investigate, for the first time, a soil insect predator-prey system. Can, however, highly sensitive detection methods identify carrion prey in predators, as has been shown for fresh prey? Fresh Melolontha melolontha (L.) larvae and 1- to 9-day-old carcasses were presented to Poecilus versicolor Sturm larvae. Mitochondrial cytochrome oxidase subunit I fragments of the prey, 175, 327 and 387 bp long, were detectable in 50% of the predators 32 h after feeding. Detectability decreased to 18% when a 585 bp sequence was amplified. Meal size and digestion capacity of individual predators had no influence on prey detection. Although prey consumption was negatively correlated with cadaver age, carrion prey could be detected by PCR as efficiently as fresh prey irrespective of carrion age. This is the first proof that PCR-based techniques are highly efficient and sensitive, both in fresh and carrion prey detection. Thus, if active predation has to be distinguished from scavenging, then additional approaches are needed to interpret the picture of prey choice derived by highly sensitive detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agusti N, De Vincente MC, Gabarra R (1999) Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: a new polymerase chain reaction-based technique for predator gut analysis. Mol Ecol 8:1467–1474

    Article  CAS  PubMed  Google Scholar 

  • Agusti N, Shayler SP, Harwood JD, Vaughan IP, Sunderland KD, Symondson WOC (2003a) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Mol Ecol 12:3467–3475

    Article  CAS  PubMed  Google Scholar 

  • Agusti N, Unruh TR, Welter SC (2003b) Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts using COI mitochondrial markers. Entomol Res 93:179–185

    Article  CAS  Google Scholar 

  • Altieri MA, Nicholls CI (2003) Biodiversity and pest management in agroecosystems. Food Products Press, New York

    Google Scholar 

  • Andre HM, Ducarme X, Lebrun P (2002) Soil biodiversity: myth, reality or conning. Oikos 96:3–24

    Article  Google Scholar 

  • Asahida T, Yamashita Y, Kobayashi T (1997) Identification of consumed stone flounder, Kareius bicoloratus (Basilewsky), from the stomach contents of sand shrimp, Crangon affinis (De Haan) using mitochondrial DNA analysis. J Exp Mar Biol Ecol 217:153–163

    Article  CAS  Google Scholar 

  • Bargett RD (2002) Causes and consequences of biological diversity in soil. Zoology 105:367–374

    Google Scholar 

  • Camara M, Borgemeister C, Markham RH, Poehling H-M (2003) Electrophoretic analysis of the prey spectrum of Teretrius nigrescens (Lewis) (Col., Histeridae), a predator of Prostephanus truncatus (Horn) (Col., Bostrichidae), in Mexico, Honduras, and Benin. J Appl Entomol 127:360–368

    Article  Google Scholar 

  • Chen Y, Giles KL, Payton ME, Greenstone MH (2000) Identifying key cereal aphid predators by molecular gut analysis. Mol Ecol 9:1887–1898

    Article  CAS  PubMed  Google Scholar 

  • Chiverton PA (1988) Searching behaviour and cereal aphid consumption by Bembidion lampros and Pterostichus cupreus in relation to temperature and prey density. Entomol Exp Appl 47:173–82

    Google Scholar 

  • Choi SJ, Szoka FC (2000) Fluorometric determination of deoxyribonuclease I activity with PicoGreen. Anal Biochem 281:95–97

    Article  CAS  PubMed  Google Scholar 

  • Davis JJ (1919) Contributions to a knowledge of the natural enemies of Phyllophaga. Ill Nat Hist Surv Bull 13:53–138

    Google Scholar 

  • DeVault TL, Rhodes OE, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102:225–234

    Article  Google Scholar 

  • Dytham C (2003) Choosing and using statistics: a biologist’s guide. Blackwell, Berlin

    Google Scholar 

  • Elliot JM (1993) Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association scientific publication no. 25. Freshwater Biological Association, Ambleside

  • Gange AC, Brown VK (1989) Effects of root herbivory by an insect on a foliar-feeding species, mediated through changes in the host plant. Oecologia 81:38–42

    Google Scholar 

  • Griffith E, Wratten SD, Vickerman GP (1985) Foraging by the carabid Agonum dorsale in the field. Ecol Entomol 10:181–189

    Google Scholar 

  • Harwood JD, Phillips SW, Sunderland KD, Symondson WOC (2001) Secondary predation: quantification of food chain errors in an aphid-spider-carabid system using monoclonal antibodies. Mol Ecol 10:2049–2057

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JR (1997) Finding mutations the basics. IRL Press, Oxford

    Google Scholar 

  • Heimbach U (1989) Massenzucht von Poecilus cupreus (Col., Carabidae). Verh Ges Ökol 19:228–229

    Google Scholar 

  • Heymons R, Lengerken HV, Bayer M (1926) Studien über die Lebenserscheinungen der Silphini (Coleopt.). I Silpha obscura L. Z Morphol Ökol Tiere 6:287–332

    Google Scholar 

  • Hill DS (1987) Agricultural insect pests of temperate regions and their control. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoogendoorn M, Heimpel GE (2001) PCR-based gut content analysis of insect predators: using ribosomal ITS-1 fragments from prey to estimate predation frequency. Mol Ecol 10:2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Howland DE, Hewitt GM (1995) Phylogeny of the Coleoptera based on mitochondrial cytochrome oxidase I sequence data. Insect Mol Biol 4:203–215

    CAS  PubMed  Google Scholar 

  • Hunter M (2001) Out of sight, out of mind: the impacts of root-redding insects in natural and managed systems. Agric For Entomol 3:3–9

    Article  Google Scholar 

  • Jarman SN, Gales NJ, Tierney M, Gill PC, Elliott NG (2002) A DNA-based method or identification of krill species and its application to analysing the diet of marine vertebrate predators. Mol Ecol 11:2679–2690

    Article  CAS  PubMed  Google Scholar 

  • Lockie JD (1956) The food and feeding behaviour of the jackdaw, rook and carrion crow. J Anim Ecol 25:421–428

    Google Scholar 

  • Loman J (1980) Habitat distribution and feeding strategies of four south Swedish corvid species during winter. Ecol Pol 28:95–109

    Google Scholar 

  • Lopez R, Potter DA (2000) Ant predation on eggs an larvae of the black cutworm (Lepitoptera: Noctuidae) and Japanese beetle (Coleoptera: Scarabaeidae) in turfgrass. Environ Entomol 29:116–125

    Google Scholar 

  • Mair J, Port GR (2001) Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric For Entomol 3:99–106

    Article  Google Scholar 

  • Masters GJ (1999) Upstairs-downstairs interactions: above- and below-ground insect herbivores. Br R Entomol Soc 23:242–247

    Google Scholar 

  • Masters GJ, Brown VK (1992) Plant-mediated interactions between two spatially separated insects. Funct Ecol 6:175–179

    Google Scholar 

  • McNabb D, Halaj J, Wise D (2001) Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia 45:289–297

    Google Scholar 

  • Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116

    PubMed  Google Scholar 

  • Moran NA, Whitham TG (1990) Interspecific competition between root-feeding and leaf-galling aphids mediated by host-plant resistance. Ecology 71:1050–1058

    Google Scholar 

  • Ponsard S, Arditi R (2000) What can stable isotopes (15N and 13C) tell about the food web soil macro-invertebrates? Ecology 81:852–864

    Google Scholar 

  • Poprawski TJ (1994) Insect parasites and predators of Phyllophaga anxia (Le Conte) (Col., Scarabaeidae) in Quebec, Canada. J Appl Entomol 117:1–9

    Google Scholar 

  • Ratcliffe ST, Robertson HM, Jones CJ, Bollero GA, Weinzierl RA (2002) Assessment of parasitism of house fly and stable fly (Diptera: Muscidae) pupae by Pteromalid (Hymenoptera: Pteromalidae) parasitoids using a polymerase chain reaction assay. J Med Entomol 39:52–60

    CAS  PubMed  Google Scholar 

  • Reinecke A, Karlovsky P, Zebitz CPW (1998) Preparation and purification of DNA from insects for AFLP analysis. Insect Mol Biol 7:95–99

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (1996–1998): Primer3. Available at http://fokker.w1.rnit.edu/primer3/Whitehead Institute for Biomedical Research

  • Schenk D, Bacher S (2004) Detection of shield beetle remains in predators using a monoclonal antibody. J Appl Entomol 128:273–278

    Article  Google Scholar 

  • Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and mesofauna-dominated community. Oecologia 123:285–286

    Article  Google Scholar 

  • Schwenke W (1974) Die Forstschädlinge Europas: Band II Käfer. Parey, Hamburg

    Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Sunderland KD (1996) Progress in quantifying predation using antibody techniques. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests, biochemical approaches. Chapman & Hall, London, pp 419–455

    Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  CAS  PubMed  Google Scholar 

  • Symondson WOC, Glen DM, Erickson ML, Liddell JE, Langdon CJ (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crops? Investigations using a monoclonal antibody-based detection system. Mol Ecol 9:1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone M (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–595

    Article  CAS  PubMed  Google Scholar 

  • Terry LA, Potter DA, Spicer PG (1993) Insecticides affect predatory arthropods and predation on Japanese beetle (Coleoptera: Scarabaeidae) eggs and fall armyworm (Lepidoptera: Noctuidae) pupae in turfgrass. J Econ Entomol 86:871–878

    CAS  Google Scholar 

  • Traugott M (2001) Ecology and prey spectrum of Cantharis-species (Coleoptera: Cantharidae) in arable land. PhD thesis. University of Innsbruck, Innsbruck

  • Traugott M (2003) The prey spectrum of larval and adult Cantharis species in arable land: an electrophoretic approach. Pedobiologia 47:161–169

    Google Scholar 

  • Villani MG, Wright RJ (1990) Environmental influences on soil macroarthropod behaviour in agricultural systems. Annu Rev Entomol 35:249–269

    Article  Google Scholar 

  • Wei X, Xu X., DeLoach CJ (1995) Biological control of white grubs (Coleoptera: Scarabaeidae) by larvae of Promachus yesonicus (Diptera: Asilidae) in China. Biol Contr 5:290–296

    Article  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147

    Article  Google Scholar 

  • Winder L, Hirst DJ, Carter N, Wratten SD, Sopp PI (1994) Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. J Appl Ecol 31:1–12

    Google Scholar 

  • Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8:2081–2087

    Article  CAS  PubMed  Google Scholar 

  • Zenger JT, Gibb TJ (2001) Identification and impact of egg predators of Cyclocephala lurida and Popillia japonica (Coleoptera: Scarabaeidae) in Turfgrass. Environ Entomol 30:425–430

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Austrian Science Fund (FWF), project number P14499. The authors are grateful to Sonja Weissteiner for her help in the feeding experiments and to Rüdiger Kaufmann for statistical advice. Christian Pázmándi and Corinna Wallinger provided valuable suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Traugott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juen, A., Traugott, M. Detecting predation and scavenging by DNA gut-content analysis: a case study using a soil insect predator-prey system. Oecologia 142, 344–352 (2005). https://doi.org/10.1007/s00442-004-1736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-004-1736-7

Keywords

Navigation