Skip to main content
Log in

Circ2388 regulates myogenesis and muscle regeneration

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The formation of skeletal muscle is a complex process that is coordinated by many regulatory factors, such as myogenic factors and noncoding RNAs. Numerous studies have proved that circRNA is an indispensable part of muscle development. However, little is known about circRNAs in bovine myogenesis. In this study, we discovered a novel circRNA, circ2388, formed by reverse splicing of the fourth and fifth exons of the MYL1 gene. The expression of circ2388 was different between fetal and adult cattle muscle. This circRNA is 99% homologous between cattle and buffalo and is localized in the cytoplasm. Thoroughly, we proved that circ2388 had no effect on cattle and buffalo myoblast proliferation but promotes myoblast differentiation and myotube fusion. Furthermore, circ2388 in vivo stimulated skeletal muscle regeneration in mouse muscle injury model. Taken together, our findings suggest that circ2388 promotes myoblast differentiation and promotes the recovery and regeneration of damaged muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used or analyzed in this study are available from the corresponding author on reasonable request.

References

  • Adhikari A, Kim W, Davie J (2021) Myogenin is required for assembly of the transcription machinery on muscle genes during skeletal muscle differentiation. PLoS ONE 16(1):e245618

    Article  Google Scholar 

  • Agarwal M, Sharma A, Kumar P, Kumar A, Bharadwaj A, Saini M et al (2020) Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development. Development (Cambridge, England) 147(7)

  • Archacka K, Ciemerych MA, Florkowska A, Romanczuk K (2021) Non-coding rnas as regulators of myogenesis and postexercise muscle regeneration. Int J Mol Sci 22(21)

  • Argilés JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Mañas L (2016) Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc 17(9):789–796

    Article  PubMed  Google Scholar 

  • Bachman JF, Klose A, Liu W, Paris ND, Blanc RS, Schmalz M et al (2018) Prepubertal skeletal muscle growth requires pax7-expressing satellite cell-derived myonuclear contribution. Development (Cambridge, England) 145(20)

  • Begum S, Yiu A, Stebbing J, Castellano L (2018) Novel tumour suppressive protein encoded by circular rna, circ-shprh, in glioblastomas. Oncogene 37(30):4055–4057

    Article  CAS  PubMed  Google Scholar 

  • Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S et al (2003) The formation of skeletal muscle: from somite to limb. J Anat 202(1):59–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P et al (1993) Circular transcripts of the testis-determining gene sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wei X, Song M, Jiang R, Huang K, Deng Y et al (2021) Circular RNA circmybpc1 promotes skeletal muscle differentiation by targeting myhc. Molecular Therapy Nucleic Acids 24:352–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA et al (2015) The RNA binding protein quaking regulates formation of circrnas. Cell 160(6):1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Du J, Zhang P, Zhao X, He J, Xu Y, Zou Q et al (2019) Microrna-351-5p mediates skeletal myogenesis by directly targeting lactamase-β and is regulated by lnc-mg. FASEB J Offic Publication Federation Am Soc Experiment Biol 33(2):1911–1926

    Article  CAS  Google Scholar 

  • Fu W, Wang R, Nanaei HA, Wang J, Hu D, Jiang Y (2022) Rgd v2.0: a major update of the ruminant functional and evolutionary genomics database. Nucleic Acids Res 50(D1):D1091-D1099

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microrna sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  • Hsu MT, Coca-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280(5720):339–340

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Chen M, Zhong D, Luo X, Feng T, Song M et al (2021) Circular RNA profiling reveals an abundant circech1 that promotes myogenesis and differentiation of bovine skeletal muscle. J Agr Food Chem 69(1):592–601

    Article  CAS  Google Scholar 

  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular rnas. Nat Rev Genet 20(11):675–691

    Article  CAS  PubMed  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O et al (2017) Circ-znf609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I (2014) A feedforward regulatory loop between hur and the long noncoding RNA linc-md1 controls early phases of myogenesis. Mol Cell 53(3):506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wei X, Yang J, Dong D, Hao D, Huang Y et al (2018a) Circfgfr4 promotes differentiation of myoblasts via binding mir-107 to relieve its inhibition of wnt3a. Molecular Therapy Nucleic Acids 11:272–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Yang J, Wei X, Song C, Dong D, Huang Y et al (2018b) Circfut10 reduces proliferation and facilitates differentiation of myoblasts by sponging mir-133a. J Cell Physiol 233(6):4643–4651

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang L, Chen L (2018c) The biogenesis, functions, and challenges of circular rnas. Mol Cell 71(3):428–442

    Article  CAS  PubMed  Google Scholar 

  • Li J, Su T, Zou C, Luo W, Shi G, Chen L et al (2020) Long non-coding RNA h19 regulates porcine satellite cell differentiation through mir-140-5p/sox4 and dbn1. Front Cell and Dev Biol 8

    Article  Google Scholar 

  • Li L, Chen Y, Nie L, Ding X, Zhang X, Zhao W et al (2019) Myod-induced circular RNA cdr1as promotes myogenic differentiation of skeletal muscle satellite cells. Biochimica et biophysica acta. Gene Regul Mech 1862(8);807–821

  • Mytidou C, Koutsoulidou A, Zachariou M, Prokopi M, Kapnisis K, Spyrou GM et al (2021) Age-related exosomal and endogenous expression patterns of mir-1, mir-133a, mir-133b, and mir-206 in skeletal muscles. Front Physiol 12

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishikura K (2010) Functions and regulation of RNA editing by adar deaminases. Annu Rev Biochem 79:321–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L et al (2017) Translation of circrnas. Mol Cell 66(1):9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SE, Jeong JB, Oh SJ, Kim SJ, Kim H, Choi A et al (2021) Wharton's jelly-derived mesenchymal stem cells reduce fibrosis in a mouse model of duchenne muscular dystrophy by upregulating microrna 499. Biomed 9(9)

  • Ravenscroft G, Zaharieva IT, Bortolotti CA, Lambrughi M, Pignataro M, Borsari M et al (2018) Bi-allelic mutations in myl1 cause a severe congenital myopathy. Hum Mol Genet 27(24):4263–4272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. P Natl Acad Sci Usa 73(11):3852–3856

    Article  CAS  Google Scholar 

  • Sinha T, Panigrahi C, Das D, Chandra PA (2022) Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA 13(1)

    Article  CAS  PubMed  Google Scholar 

  • Teplova M, Hafner M, Teplov D, Essig K, Tuschl T, Patel DJ (2013) Structure-function studies of star family quaking proteins bound to their in vivo RNA target sites. Gene Dev 27(8):928–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viecelli C, Aguayo D (2021) May the force and mass be with you-evidence-based contribution of mechano-biological descriptors of resistance exercise. Front Physiol 12:686119

    Article  PubMed  Google Scholar 

  • Waldemer-Streyer RJ, Kim D, Chen J (2022) Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J

  • Wei X, Li H, Yang J, Hao D, Dong D, Huang Y et al (2017) Circular RNA profiling reveals an abundant circlmo7 that regulates myoblasts differentiation and survival by sponging mir-378a-3p. Cell Death Dis 8(10):e3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng J, Zhang P, Yin X, Jiang B (2018) The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury. Front Mol Neurosci 11:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Wohlwend M, Laurila P, Williams K, Romani M, Lima T, Pattawaran P et al (2021) The exercise-induced long noncoding RNA cytor promotes fast-twitch myogenesis in aging. Sci Transl Med 13(623):c7367

    Article  Google Scholar 

  • Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X et al (2019) Circfbxw7 inhibits malignant progression by sponging mir-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Molecular Therapy Nucleic Acids 18:88–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P et al (2018) A peptide encoded by circular form of linc-pint suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 9(1):4475

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Du J, Guo X, Wu S, He J, Li X et al (2021) Lncmyod promotes skeletal myogenesis and regulates skeletal muscle fiber-type composition by sponging mir-370–3p. Genes-Basel 12(4)

Download references

Funding

This work was supported by the China Postdoctoral Science Foundation (Grant No. 2019M663842), the National Natural Science Foundation of China (Grant Nos. 32102514 and U20A2051), the Guangxi Natural Science Foundation (Grant Nos. 2019GXNSFAA185056 and 2020GXNSFBA297148), and the Science and Technology Base and Talent Special in Guangxi (Grant No. AD20159062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Ethical approval

The animal care and research protocol for this experiment has been approved by the Animal Care Committee of the College of Animal Science and Technology of Guangxi University.

Consent to participate

Dandan Zhong, Kongwei Huang, and Liyin Zhang were responsible for the execution of the experiment and drawing diagrams. Dandan Zhong and Kongwei Huang participated in the writing of the manuscript. Yudong Cai and Huiren Li participated in the analysis of the data. Qingyou Liu and Deshun Shi were involved in the revision of the manuscript. Hui Li and Yu Jiang participated in the experimental design and guidance. Dandan Zhong and Kongwei Huang contributed equally to this work. All authors read and approved the final manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2167 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, D., Huang, K., Zhang, L. et al. Circ2388 regulates myogenesis and muscle regeneration. Cell Tissue Res 393, 149–161 (2023). https://doi.org/10.1007/s00441-023-03787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03787-1

Keywords

Navigation