Skip to main content
Log in

Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Rab11, a small Ras like GTPase marking the recycling endosomes, plays instrumental roles in Drosophila embryonic epithelial morphogenesis where an array of reports testify its importance in the maintenance of cyto-architectural as well as functional attributes of the concerned cells. Proper Rab11 functions ensure a precise regulation of developmentally active cell signaling pathways which in turn promote the expression of morphogens and other physico-chemical cues which finally forge an embryo out of a single layer of cells. Earlier reports have established that Rab11 functions are vital for fly embryonic development where amorphic mutants such as EP3017 homozygotes show a fair degree of epithelial defects along with incomplete dorsal closure. Here, we present a detailed account of the effects of Rab11 loss of function in the dorso-lateral epithelium which resulted in severe dorsal closure defects along with an elevated JNK-Dpp expression. We further observed that the dorso-lateral epithelial cells undergo epithelial to mesenchymal transition as well as apoptosis in Rab11 mutants with elevated expression levels of MMP1 and Caspase-3, where Caspase-3 contributes to the Rab11 knockout phenotype contrary to the knockdown mutants or hypomorphs. Interestingly, the elevated expressions of the core JNK-Dpp signaling could be rescued with a simultaneous knockdown of wingless in the Rab11 knockout mutants suggesting a genetic interaction of Rab11 with the Wingless pathway during dorsal closure, an ideal model of epithelial wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and materials availability

All data has been provided in the manuscript in the results and supplementary section. For further details, one may communicate with the corresponding author.

References

  • Agnès F, Suzanne M, Noselli S (1999) The Drosophila JNK pathway controls the morphogenesis of imaginal discs during metamorphosis. Development 126:5453–5462

    Article  PubMed  Google Scholar 

  • Aguilar-Aragon M, Fletcher G, Thompson BJ (2020) The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 459:126–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alone DP, Tiwari AK, Mandal L, Li M, Mechler BM, Roy JK (2005) Rab11 is required during Drosophila eye development. Int J Dev Biol 49:873–879

    Article  CAS  PubMed  Google Scholar 

  • Anderson KV, Jürgens G, Nüsslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Roy JK (2017) Dicer-1 regulates proliferative potential of Drosophila larval neural stem cells through bantam miRNA based down-regulation of the G1/S inhibitor Dacapo. Dev Biol 423:57–65

    Article  CAS  PubMed  Google Scholar 

  • Bhuin T, Roy JK (2010) Rab11 regulates JNK and Raf/MAPK-ERK signaling pathways during Drosophila wing development. Cell Biol Int 34:1113–1118

    Article  CAS  PubMed  Google Scholar 

  • Bhuin T, Roy JK (2012) Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila. Int J Mol Med 1:185

    CAS  Google Scholar 

  • Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ, Dunn AR (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. Proc Natl Acad Sci USA 109:12568–12573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    Article  CAS  PubMed  Google Scholar 

  • Calleja M, Herranz H, Estella C, Casal J, Lawrence P, Simpson P, Morata G (2000) Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development 127:3971–3980

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee N, Bohmann D (2012) A versatile ΦC31 based reporter system for measuring AP-1 and Nrf2 signaling in Drosophila and in tissue culture. PLoS ONE 7:34063

    Article  Google Scholar 

  • Choubey PK, Nandy N, Pandey A, Roy JK (2020) Rab11 plays a key role in stellate cell differentiation via non-canonical Notch pathway in Malpighian tubules of Drosophila melanogaster. Dev Biol 461:19–30

    Article  CAS  PubMed  Google Scholar 

  • Desclozeaux M, Venturato J, Wylie FG, Kay JG, Joseph SR, Le HT, Stow JL (2008) Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am J Physiol 295:545–556

    Article  Google Scholar 

  • Deshpande M, Feiger Z, Shilton AK, Luo CC, Silverman E, Rodal AA (2016) Role of BMP receptor traffic in synaptic growth defects in an ALS model. Mol Biol Cell 27:2898–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey SK, Tapadia MG (2017) Yorkie regulates neurodegeneration through canonical pathway and innate immune response. Mol Neurobiol 55:1193–1207

    Article  PubMed  Google Scholar 

  • Duman JG, Tyagarajan K, Kolsi MS, Moore HPH, Forte JG (1999) Expression of Rab11a N124I in gastric parietal cells inhibits stimulatory recruitment of the H+-K+-ATPase. Am J Physiol 277:361–372

    Article  Google Scholar 

  • Entchev EV, González-Gaitán MA (2002) Morphogen gradient formation and vesicular trafficking. Traffic 3:98–109

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Bergmann A (2010) The cleaved-caspase-3 antibody is a marker of caspase-9-like DRONC activity in Drosophila. Cell Death Differ 17:534–539

    Article  CAS  PubMed  Google Scholar 

  • Fernández BG, Arias AM, Jacinto A (2007) Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis. Mech Dev 124:884–897

    Article  PubMed  Google Scholar 

  • Goberdhan DC, Wilson C (1998) JNK, cytoskeletal regulator and stress response kinase? A Drosophila perspective. BioEssays 20:1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Gumbiner BM, McCrea PD (1993) Catenins as mediators of the cytoplasmic functions of cadherins. J Cell Sci Suppl 17:155–158

    Article  CAS  PubMed  Google Scholar 

  • Harden N, Ricos M, Ong YM, Chia W, Lim L (1999) Participation of small GTPases in dorsal closure of the Drosophila embryo: distinct roles for Rho subfamily proteins in epithelial morphogenesis. J Cell Sci 112:273–284

    Article  CAS  PubMed  Google Scholar 

  • Hariharan IK, Hu KQ, Asha H, Quintanilla A, Ezzell RM, Settleman J (1995) Characterization of rho GTPase family homologues in Drosophila melanogaster: overexpressing Rho1 in retinal cells causes a late developmental defect. EMBO J 14:292–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartenstein V (1993) Atlas of Drosophila development (Vol. 328). Cold Spring Harbor Laboratory Press

  • Heisenberg CP, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153:948–962

    Article  CAS  PubMed  Google Scholar 

  • Homsy JG, Jasper H, Peralta XG, Wu H, Kiehart DP, Bohmann D (2006) JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev Dyn 235:427–434

    Article  CAS  PubMed  Google Scholar 

  • Hou XS, Goldstein ES, Perrimon N (1997) Drosophila Jun relays the Jun amino-terminal kinase signal transduction pathway to the Decapentaplegic signal transduction pathway in regulating epithelial cell sheet movement. Genes Dev 11:1728–1737

    Article  CAS  PubMed  Google Scholar 

  • Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Phys Rev 91:119–149

    CAS  Google Scholar 

  • Ilina O, Friedl P (2009) Mechanisms of collective cell migration at a glance. J Cell Sci 122:3203–3208

    Article  CAS  PubMed  Google Scholar 

  • Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, Martin P (2000) Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr Biol 10:1420–1426

    Article  CAS  PubMed  Google Scholar 

  • Jacinto A, Woolner S, Martin P (2002) Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev Cell 3:9–19

    Article  CAS  PubMed  Google Scholar 

  • Jankovics F, Sinka R, Erdélyi M (2001) An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte. Genetics 158:1177–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezowska B, Fernández BG, Amândio AR, Duarte P, Mendes C, Brás-Pereira C, Janody F (2011) A dual function of Drosophila capping protein on DE-cadherin maintains epithelial integrity and prevents JNK-mediated apoptosis. Dev Biol 360:143–159

    Article  CAS  PubMed  Google Scholar 

  • Jin YJ, Park I, Hong IK, Byun HJ, Choi J, Kim YM, Lee H (2011) Fibronectin and vitronectin induce AP-1-mediated matrix metalloproteinase-9 expression through integrin α5β1/αvβ3-dependent Akt, ERK and JNK signaling pathways in human umbilical vein endothelial cells. Cell Signal 23:125–134

    Article  CAS  PubMed  Google Scholar 

  • Jing LIU, Anning LIN (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42

    Article  Google Scholar 

  • Kiehart DP, Crawford JM, Aristotelous A, Venakides S, Edwards GS (2017) Cell sheet morphogenesis: dorsal closure in Drosophila melanogaster as a model system. Annu Rev Cell Dev Biol 33:169–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolahgar G, Bardet PL, Langton PF, Alexandre C, Vincent JP (2011) Apical deficiency triggers JNK-dependent apoptosis in the embryonic epidermis of Drosophila. Development 138:3021–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushnir T, Mezuman S, Bar-Cohen S, Lange R, Paroush ZE, Helman A (2017) Novel interplay between JNK and Egfr signaling in Drosophila dorsal closure. PLoS Genet 13:1006860

    Article  Google Scholar 

  • Lawrence N, Morel V (2003) Dorsal closure and convergent extension: two polarised morphogenetic movements controlled by similar mechanisms? Mech Dev 120:1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Lo Presti L, Chang F, Martin SG (2012) Myosin Vs organize actin cables in fission yeast. Mol Biol Cell 23:4579–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marois E, Mahmoud A, Eaton S (2006) The endocytic pathway and formation of the Wingless morphogen gradient. Development 133:307–317

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Parkhurst SM (2004) Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034

    Article  CAS  PubMed  Google Scholar 

  • Martín-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM, Martinez-Arias A (1998) Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 12:557–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín-Blanco E, Pastor-Pareja JC, García-Bellido A (2000) JNK and decapentaplegic signaling control adhesiveness and cytoskeleton dynamics during thorax closure in Drosophila. Proc Natl Acad Sci USA 97:7888–7893

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateus AM, Gorfinkiel N, Schamberg S, Arias AM (2011) Endocytic and recycling endosomes modulate cell shape changes and tissue behaviour during morphogenesis in Drosophila. PLoS ONE 6:18729

    Article  Google Scholar 

  • McEwen DG, Cox RT, Peifer M (2000) The canonical Wg and JNK signaling cascades collaborate to promote both dorsal closure and ventral patterning. Development 127:3607–3617

    Article  CAS  PubMed  Google Scholar 

  • Morel V, Arias AM (2004) Armadillo/β-catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 131:3273–3283

    Article  CAS  PubMed  Google Scholar 

  • Nandy N, Roy JK (2020) Rab11 is essential for lgl mediated JNK–Dpp signaling in dorsal closure and epithelial morphogenesis in Drosophila. Dev Biol 464:188–201

    Article  CAS  PubMed  Google Scholar 

  • Narasimha M, Brown NH (2006) Confocal microscopy of Drosophila embryos. Cell Biology. Academic Press, pp 77–86

    Chapter  Google Scholar 

  • Noselli S, Agnès F (1999) Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr Opin Genet Dev 9:466–472

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Fujiwara S, Mizuno K (2017) Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 161:245–254

    CAS  PubMed  Google Scholar 

  • Ossipova O, Chuykin I, Chu CW, Sokol SY (2015) Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 142:99–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Ossipova O, Kim K, Lake BB, Itoh K, Ioannou A, Sokol SY (2014) Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure. Nat Commun 5:1–8

    Article  Google Scholar 

  • Ostrowski S, Dierick HA, Bejsovec A (2002) Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 161:171–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29:212–226

    Article  CAS  PubMed  Google Scholar 

  • Priya R, Yap AS, Gomez GA (2013) E-cadherin supports steady-state Rho signaling at the epithelial zonula adherens. Differentiation 86:133–140

    Article  CAS  PubMed  Google Scholar 

  • Ray M, Lakhotia SC (2018) Altered hsrω lncRNA levels in activated Ras background further enhance Ras activity in Drosophila eye and induces more R7 photoreceptors. bioRxiv, p 224543

  • Riesgo-Escovar JR, Hafen E (1997) Drosophila Jun kinase regulates expression of decapentaplegic via the ETS-domain protein Aop and the AP-1 transcription factor DJun during dorsal closure. Genes Dev 11:1717–1727

    Article  CAS  PubMed  Google Scholar 

  • Roeth JF, Sawyer JK, Wilner DA, Peifer M (2009) Rab11 helps maintain apical crumbs and adherens junctions in the Drosophila embryonic ectoderm. PLoS ONE 4:7634

    Article  Google Scholar 

  • Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathways. Dev Cell 7:491–501

    Article  CAS  PubMed  Google Scholar 

  • Sasikumar S, Roy JK (2009) Developmental expression of Rab11, a small GTP-binding protein in Drosophila epithelia. Genesis 47:32–39

    Article  CAS  PubMed  Google Scholar 

  • Satoh AK, O’Tousa JE, Ozaki K, Ready DF (2005) Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132:1487–1497

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Kumar Roy J (2013) Rab11 plays an indispensable role in the differentiation and development of the indirect flight muscles in Drosophila. PLoS ONE 8:73305

    Article  Google Scholar 

  • Sluss HK, Davis RJ (1997) Embryonic morphogenesis signaling pathway mediated by JNK targets the transcription factor JUN and the TGF-β homologue decapentaplegic. J Cell Biochem 67:1–12

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Rousset R, Noselli S (2009) JNK signalling influences intracellular trafficking during Drosophila morphogenesis through regulation of the novel target gene Rab30. Dev Biol 331:250–260

    Article  CAS  PubMed  Google Scholar 

  • Tiklová K, Senti KA, Wang S, Gräslund A, Samakovlis C (2010) Epithelial septate junction assembly relies on melanotransferrin iron binding and endocytosis in Drosophila. Nat Cell Biol 12:1071–1077

    Article  PubMed  Google Scholar 

  • Tiwari AK, Roy JK (2008) Rab11 is essential for fertility in Drosophila. Cell Biol Int 32:1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Tiwari AK, Roy JK (2009) Mutation in Rab11 results in abnormal organization of ommatidial cells and activation of JNK signaling in the Drosophila eye. Eur J Cell Biol 88:445–460

    Article  CAS  PubMed  Google Scholar 

  • Van De Craen M, Declercq W, Fiers W, Vandenabeele P (1999) The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ 6:1117–1124

    Article  PubMed  Google Scholar 

  • Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  CAS  PubMed  Google Scholar 

  • Wang JZ, Yang SX, Ye F, Xia XP, Shao XX, Xia SL, Zheng B, Xu CL (2018) Hypoxia-induced Rab11-family interacting protein 4 expression promotes migration and invasion of colon cancer and correlates with poor prognosis. Mol Med Rep 17:3797–3806

    CAS  PubMed  Google Scholar 

  • Welz T, Wellbourne-Wood J, Kerkhoff E (2014) Orchestration of cell surface proteins by Rab11. Trends Cell Biol 24:407–415

    Article  CAS  PubMed  Google Scholar 

  • White P, Vincent JP (1996) Uncoupling cadherin-based adhesion from wingless signalling in Drosophila. Nature 383:627–630

    Article  PubMed  Google Scholar 

  • Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4:907–912

    Article  CAS  PubMed  Google Scholar 

  • Xu CL, Wang JZ, Xia XP, Pan CW, Shao XX, Xia SL, Yang SX, Zheng B (2016) Rab11-FIP2 promotes colorectal cancer migration and invasion by regulating PI3K/AKT/MMP7 signaling pathway. Biochem Biophys Res Commun 470:397–404

    Article  CAS  PubMed  Google Scholar 

  • Zhang YV, Ormerod KG, Littleton JT (2017) Astrocyte Ca2+ influx negatively regulates neuronal activity. eNeuro 4:1–12

Download references

Acknowledgements

We thank the fly community for generously providing fly stocks. Special acknowledgements to Professor B.J. Rao for providing the TRE-JNK/CyO fly stock and Dr. A. Satoh for providing the anti-Myo V antibody. We thank Dr. Satish Sasikumar and Dr. Tanmay Bhuin for their pioneering studies on the functions of Rab11 on Drosophila embryonic epithelial morphogenesis. Special thanks to Mr. Rohit Kunar for his critical suggestions during the preparation of the manuscript. We duly acknowledge the equipment support of DST-FIST, UGC-CAS, IoE to Department of Zoology and the National facility for Laser Scanning Confocal Microscopy, and Department of Zoology, Banaras Hindu University.

Funding

We sincerely thank the University Grants Commission, New Delhi, and Indian Council of Medical Research, New Delhi, for providing the fellowships to NN.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NN and JKR. Methodology: NN. Investigation: NN. Visualization: NN. Project administration: JKR. Supervision: JKR. Writing–original draft: NN. Writing–review and editing: NN and JKR.

Corresponding author

Correspondence to Jagat Kumar Roy.

Ethics declarations

Ethical approval

All studies were performed as per ethical guidelines. All applicable international, national, and/or institutional guidelines for the care and use of flies were followed.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Summary

Functional loss of Rab11 affects dorsal closure in Drosophila embryos by an ectopic induction of Caspase-3 expression through a genetic interaction with wingless.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8075 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandy, N., Roy, J.K. Rab11 negatively regulates wingless preventing JNK-mediated apoptosis in Drosophila epithelium during embryonic dorsal closure. Cell Tissue Res 391, 485–504 (2023). https://doi.org/10.1007/s00441-023-03740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03740-2

Keywords

Navigation