Skip to main content

Advertisement

Log in

Differential gene expression and hallmarks of stemness in epithelial cells of the developing rat epididymis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Epididymal development can be subdivided into three phases: undifferentiated, a period of differentiation, and expansion. The objectives of this study were (1) to assess gene expression profiles in epididymides, (2) predict signaling pathways, and (3) develop a novel 3D cell culture method to assess the regulation of epididymal development in vitro. Microarray analyses indicate that the largest changes in differential gene expression occurred between the 7- to 18-day period, in which 1452 genes were differentially expressed, while 671 differentially expressed genes were noted between days 18 and 28, and there were 560 differentially expressed genes between days 28 and 60. Multiple signaling pathways were predicted at different phases of development. Pathway associations indicated that in epididymides of 7- to 18-day old rats, there was a significant association of regulated genes implicated in stem cells, estrogens, thyroid hormones, and kidney development, while androgen- and estrogen-related pathways were enriched at other phases of development. Organoids were derived from CD49f + columnar cells from 7-day old rats, while no organoids developed from CD49f cells. Cells cultured in an epididymal basal cell organoid medium versus a commercial kidney differentiation medium supplemented with DHT revealed that irrespective of the culture medium, cells within differentiating organoids expressed p63, AQP9, and V-ATPase after 14 days of culture. The commercial kidney medium resulted in an increase in the number of organoids positive for p63, AQP9, and V-ATPase. Together, these data indicate that columnar cells represent an epididymal stem/progenitor cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The gene expression data from transcriptomic analyses have been deposited in the National Center for Biotechnology Information’s Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO accession number GSE193653. Other data are available from the corresponding author.

References

  • Agarwal A, Hoffer AP (1989) Ultrastructural studies on the development of the blood-epididymis barrier in immature rats. J Androl 10:425–431

    Article  CAS  PubMed  Google Scholar 

  • Alimperti S, Andreadis ST (2015) CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 14:270–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anbalagan J, Sashi AM, Vengatesh G, Stanley JA, Neelamohan R, Aruldhas MM (2010) Mechanism underlying transient gestational-onset hypothyroidism-induced impairment of posttesticular sperm maturation in adult rats. Fertil Steril 93:2491–2497

    Article  CAS  PubMed  Google Scholar 

  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44:W147-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker N, Clevers H (2010) Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138:1681–1696

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  • Breton S, Brown D (2007) New insights into the regulation of V-ATPase-dependent proton secretion. Am J Physiol Renal Physiol 292:F1-10

    Article  CAS  PubMed  Google Scholar 

  • Breton S, Brown D (2013) Regulation of luminal acidification by the V-ATPase. Physiology (bethesda ) 28:318–329

    CAS  Google Scholar 

  • Breton S, Ruan YC, Park YJ, Kim B (2016) Regulation of epithelial function, differentiation, and remodeling in the epididymis. Asian J Androl 18:3–9

    Article  CAS  PubMed  Google Scholar 

  • Brooks DE, Means AR, Wright EJ, Singh SP, Tiver KK (1986) Molecular cloning of the cDNA for two major androgen-dependent secretory proteins of 18.5 kilodaltons synthesized by the rat epididymis. J Biol Chem 261:4956–4961

    Article  CAS  PubMed  Google Scholar 

  • Browne JA, Leir SH, Yin S, Harris A (2019) Transcriptional networks in the human epididymis. Andrology 7:741–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao W, D’Amore PA (2008) IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev 19:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwall GA (2009) New insights into epididymal biology and function. Hum Reprod Update 15:213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwall GA, Do HQ, Hewetson A, Muthusubramanian A, Myers C (2019) The epididymal amyloid matrix: structure and putative functions. Andrology 7:603–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyr DG, Dufresne J, Gregory M (2018) Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 81:207–219

    Article  CAS  PubMed  Google Scholar 

  • Cyr DG, Gregory M, Dube E, Dufresne J, Chan PT, Hermo L (2007) Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood-epididymal barrier in animals and humans. Asian J Androl 9:463–475

    Article  CAS  PubMed  Google Scholar 

  • Cyr DG, Hermo L, Egenberger N, Mertineit C, Trasler JM, Laird DW (1999) Cellular immunolocalization of occludin during embryonic and postnatal development of the mouse testis and epididymis. Endocrinology 140:3815–3825

    Article  CAS  PubMed  Google Scholar 

  • De Paul AL, Mukdsi JH, Pellizas CG, Montesinos M, Gutierrez S, Susperreguy S, Del Rio A, Maldonado CA, Torres AI (2008) Thyroid hormone receptor alpha 1-beta 1 expression in epididymal epithelium from euthyroid and hypothyroid rats. Histochem Cell Biol 129:631–642

    Article  PubMed  CAS  Google Scholar 

  • de Visser KE, Ciampricotti M, Michalak EM, Tan DW, Speksnijder EN, Hau CS, Clevers H, Barker N, Jonkers J (2012) Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol 228:300–309

    Article  PubMed  CAS  Google Scholar 

  • Do HQ, Hewetson A, Myers C, Khan NH, Hastert MC, F MH, Latham MP, Wylie BJ, Sutton RB, Cornwall GA, (2019) The Functional mammalian CRES (cystatin-related epididymal spermatogenic) amyloid is antiparallel beta-sheet rich and forms a metastable oligomer during assembly. Sci Rep 9:9210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drevet JR, Lareyre JJ, Schwaab V, Vernet P, Dufaure JP (1998) The PEA3 protein of the Ets oncogene family is a putative transcriptional modulator of the mouse epididymis-specific glutathione peroxidase gene gpx5. Mol Reprod Dev 49:131–140

    Article  CAS  PubMed  Google Scholar 

  • Dube E, Chan PT, Hermo L, Cyr DG (2007) Gene expression profiling and its relevance to the blood-epididymal barrier in the human epididymis. Biol Reprod 76:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Dube E, Cyr DG (2012) The blood-epididymis barrier and human male fertility. Adv Exp Med Biol 763:218–236

    Article  CAS  PubMed  Google Scholar 

  • Elbashir S, Magdi Y, Rashed A, Henkel R, Agarwal A (2021) Epididymal contribution to male infertility: an overlooked problem. Andrologia 53:e13721

    Article  PubMed  Google Scholar 

  • Fouchecourt S, Lareyre JJ, Chaurand P, DaGue BB, Suzuki K, Ong DE, Olson GE, Matusik RJ, Caprioli RM, Orgebin-Crist MC (2003) Identification, immunolocalization, regulation, and postnatal development of the lipocalin EP17 (epididymal protein of 17 kilodaltons) in the mouse and rat epididymis. Endocrinology 144:887–900

    Article  CAS  PubMed  Google Scholar 

  • Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715

    Article  CAS  PubMed  Google Scholar 

  • Girardet L, Bernet A, Calvo E, Soulet D, Joly-Beauparlant C, Droit A, Cyr DG, Belleannee C (2020) Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium. FASEB J 34:7593–7609

    Article  CAS  PubMed  Google Scholar 

  • Gregory M, Cyr DG (2014) The Blood-Epididymis Barrier and Inflammation Spermatogenesis 4:e979619

    PubMed  Google Scholar 

  • Gregory M, Cyr DG (2019) Effects of prostaglandin E2 on gap junction protein alpha 1 in the rat epididymis. Biol Reprod 100:123–132

    Article  PubMed  Google Scholar 

  • Guan X, Inai T, Shibata Y (2005) Segment-specific expression of tight junction proteins, claudin-2 and -10, in the rat epididymal epithelium. Arch Histol Cytol 68:213–225

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Yoshinaga A, Ohno R, Ishii N, Kamata S, Yamada T (2004) Expression of the p63 and Notch signaling systems in rat testes during postnatal development: comparison with their expression levels in the epididymis and vas deferens. J Androl 25:692–698

    Article  CAS  PubMed  Google Scholar 

  • Hejmej A, Bilinska B (2018) The effects of flutamide on cell-cell junctions in the testis, epididymis, and prostate. Reprod Toxicol 81:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hermo L, Barin K, Robaire B (1992) Structural differentiation of the epithelial cells of the testicular excurrent duct system of rats during postnatal development. Anat Rec 233:205–228

    Article  CAS  PubMed  Google Scholar 

  • Hess RA (2000) Oestrogen in fluid transport in efferent ducts of the male reproductive tract. Rev Reprod 5:84–92

    Article  CAS  PubMed  Google Scholar 

  • Hess RA, Sharpe RM, Hinton BT (2021) Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 118:41–71

    Article  CAS  PubMed  Google Scholar 

  • Holschbach C, Cooper TG (2002) A possible extratubular origin of epididymal basal cells in mice. Reproduction 123:517–525

    Article  CAS  PubMed  Google Scholar 

  • Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu SG, Zou M, Yao GX, Ma WB, Zhu QL, Li XQ, Chen ZJ, Sun Y (2014) Androgenic regulation of beta-defensins in the mouse epididymis. Reprod Biol Endocrinol 12:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  CAS  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Jalkanen J, Huhtaniemi I, Poutanen M (2005) Discovery and characterization of new epididymis-specific beta-defensins in mice. Biochim Biophys Acta 1730:22–30

    Article  CAS  PubMed  Google Scholar 

  • Jones RC, Dacheux JL, Nixon B, Ecroyd HW (2007) Role of the epididymis in sperm competition. Asian J Androl 9:493–499

    Article  CAS  PubMed  Google Scholar 

  • Jrad-Lamine A, Henry-Berger J, Gourbeyre P, Damon-Soubeyrand C, Lenoir A, Combaret L, Saez F, Kocer A, Tone S, Fuchs D, Zhu W, Oefner PJ, Munn DH, Mellor AL, Gharbi N, Cadet R, Aitken RJ, Drevet JR (2011) Deficient tryptophan catabolism along the kynurenine pathway reveals that the epididymis is in a unique tolerogenic state. J Biol Chem 286:8030–8042

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Vinarsky V, Wain J, Zhao R, Jung K, Choi J, Lam A, Pardo-Saganta A, Breton S, Rajagopal J, Yun SH (2012) In vivo imaging of tracheal epithelial cells in mice during airway regeneration. Am J Respir Cell Mol Biol 47:864–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleene KC (1989) Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development 106:367–373

    Article  CAS  PubMed  Google Scholar 

  • Kleene KC, Wang MY, Cutler M, Hall C, Shih D (1994) Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse. Mol Reprod Dev 39:355–364

    Article  CAS  PubMed  Google Scholar 

  • Lareyre JJ, Reid K, Nelson C, Kasper S, Rennie PS, Orgebin-Crist MC, Matusik RJ (2000) Characterization of an androgen-specific response region within the 5’ flanking region of the murine epididymal retinoic acid binding protein gene. Biol Reprod 63:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Legare C, Akintayo A, Blondin P, Calvo E, Sullivan R (2017) Impact of male fertility status on the transcriptome of the bovine epididymis. Mol Hum Reprod 23:355–369

    Article  CAS  PubMed  Google Scholar 

  • Leung C, Tan SH, Barker N (2018) Recent advances in Lgr5(+) stem cell research. Trends Cell Biol 28:380–391

    Article  CAS  PubMed  Google Scholar 

  • Liman N, Alan E, Apaydin N (2019) The expression and localization of Toll-like receptors 2, 4, 5 and 9 in the epididymis and vas deferens of a adult tom cats. Theriogenology 128:62–73

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Yu H, Ni Z, Hu S, Ma W, Chu C, Liu Q, Zhang Y (2013) Spink13, an epididymis-specific gene of the Kazal-type serine protease inhibitor (SPINK) family, is essential for the acrosomal integrity and male fertility. J Biol Chem 288:10154–10165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandon M, Hermo L, Cyr DG (2015) Isolated rat epididymal basal cells share common properties with adult stem cells. Biol Reprod 93:115–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGuire C, Stransky L, Cotter K, Forgac M (2017) Regulation of V-ATPase Activity Front Biosci (landmark Ed) 22:609–622

    Article  CAS  Google Scholar 

  • Mehraj V, Ramendra R, Isnard S, Dupuy FP, Ponte R, Chen J, Kema I, Jenabian MA, Costinuik CT, Lebouche B, Thomas R, Cote P, Leblanc R, Baril JG, Durand M, Chartrand-Lefebvre C, Tremblay C, Ancuta P, Bernard NF, Sheppard DC, Routy JP, Montreal Primary HIVIS, Canadian HIV, Aging Cohort Study G (2020) Circulating (1–>3)-beta-D-glucan is associated with immune activation during human immunodeficiency virus infection. Clin Infect Dis 70:232–241

    Article  CAS  Google Scholar 

  • Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, Thomas PD (2021) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 49:D394–D403

    Article  CAS  PubMed  Google Scholar 

  • Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI (2019) Quiescence entry, maintenance, and exit in adult stem cells. Int J Mol Sci 20:2158

    Article  CAS  PubMed Central  Google Scholar 

  • Mou H, Vinarsky V, Tata PR, Brazauskas K, Choi SH, Crooke AK, Zhang B, Solomon GM, Turner B, Bihler H, Harrington J, Lapey A, Channick C, Keyes C, Freund A, Artandi S, Mense M, Rowe S, Engelhardt JF, Hsu YC, Rajagopal J (2016) Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19:217–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munipalli SB, Mounika MR, Aisha J, Yenugu S (2019) Tlr1-13, Nod1/2 and antimicrobial gene expression in the epididymis and testis of rats with alloxan-induced diabetes. Andrologia 51:e13437

    Article  PubMed  Google Scholar 

  • Murashima A, Kishigami S, Thomson A, Yamada G (2015) Androgens and mammalian male reproductive tract development. Biochim Biophys Acta 1849:163–170

    Article  CAS  PubMed  Google Scholar 

  • Murashima A, Miyagawa S, Ogino Y, Nishida-Fukuda H, Araki K, Matsumoto T, Kaneko T, Yoshinaga K, Yamamura K, Kurita T, Kato S, Moon AM, Yamada G (2011) Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology 152:1640–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni Y, Zhou Y, Chen WY, Zheng M, Yu J, Li C, Zhang Y, Shi QX (2009) HongrES1, a cauda epididymis-specific protein, is involved in capacitation of guinea pig sperm. Mol Reprod Dev 76:984–993

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Woo JM, Choi E, Kim T, Cho BN, Park ZY, Kim YC, Kim DH, Cho C (2005) Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem Biophys Res Commun 331:1374–1383

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CA, Carnes K, Franca LR, Hermo L, Hess RA (2005) Aquaporin-1 and -9 are differentially regulated by oestrogen in the efferent ductule epithelium and initial segment of the epididymis. Biol Cell 97:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palladino MA, Powell JD, Korah N, Hermo L (2004) Expression and localization of hypoxia-inducible factor-1 subunits in the adult rat epididymis. Biol Reprod 70:1121–1130

    Article  CAS  PubMed  Google Scholar 

  • Patil S (2021) CD44 sorted cells have an augmented potential for proliferation, epithelial-mesenchymal transition, stemness, and a predominantly inflammatory cytokine and angiogenic secretome. Curr Issues Mol Biol 43:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier RM (1994) Blood barriers of the epididymis and vas deferens act asynchronously with the blood barrier of the testis in the mink (Mustela vison). Microsc Res Tech 27:333–349

    Article  CAS  PubMed  Google Scholar 

  • Pierucci-Alves F, Midura-Kiela MT, Fleming SD, Schultz BD, Kiela PR (2018) Transforming growth factor beta signaling in dendritic cells is required for immunotolerance to sperm in the epididymis. Front Immunol 9:1882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pietrement C, Sun-Wada GH, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S (2006) Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 74:185–194

    Article  CAS  PubMed  Google Scholar 

  • Pinel L, Mandon M, Cyr DG (2019) Tissue regeneration and the epididymal stem cell. Andrology 7:618–630

    CAS  PubMed  Google Scholar 

  • Pinel L, Cyr DG (2021) Self-renewal and differentiation of rat epididymal basal cells using a novel in vitro organoid model. Biol Reprod 105:987–1001

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranjan M, Lee O, Cottone G, Mirzaei Mehrabad E, Spike BT, Zeng Z, Yadav S, Chatterton R, Kim JJ, Clare SE, Khan SA (2021) Progesterone receptor antagonists reverse stem cell expansion and the paracrine effectors of progesterone action in the mouse mammary gland. Breast Cancer Res 23:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro CM, Ferreira LG, Thimoteo DS, Smith LB, Hinton BT, Avellar MC (2017) Novel androgen-induced activity of an antimicrobial beta-defensin: regulation of Wolffian duct morphogenesis. Mol Cell Endocrinol 442:142–152

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro CM, Silva EJ, Hinton BT, Avellar MC (2016) beta-defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios. Asian J Androl 18:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robaire B, Hinton BT (2015) The Epididymis. In: Plant T, Zeleznik A (eds) Knobil and Neill’s reproductive physiology. Academic Press, New York, pp 691–771

    Chapter  Google Scholar 

  • Robaire B, Hermo L (1988) Efferent ducts, epididymis, and vas deferens: structure, functions and their regulation. In: Neill JK, E (ed) The Physiology of Reproduction. Raven Press, pp 999–1080

  • Rock JR, Randell SH, Hogan BL (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3:545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues A, Queiroz DB, Honda L, Silva EJ, Hall SH, Avellar MC (2008) Activation of toll-like receptor 4 (TLR4) by in vivo and in vitro exposure of rat epididymis to lipopolysaccharide from Escherichia Coli. Biol Reprod 79:1135–1147

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez CM, Kirby J.L.; Hinton, B.T. (2002) The development of the epididymis. In: Robaire BH, B.T. (ed) The Epididymis: From Molecules to Clinical Practice. Kluwer Academic/Plenum Publishers, New York, pp 251–268

  • Roomans GM (2010) Tissue engineering and the use of stem/progenitor cells for airway epithelium repair. Eur Cell Mater 19:284–299

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Kawakami S, Okada Y, Takazawa R, Koga F, Kageyama Y, Kihara K (2006) Spatial and isoform specific p63 expression in the male human urogenital tract. J Urol 176:2268–2273

    Article  CAS  PubMed  Google Scholar 

  • Santos CP, Lapi E, Martinez de Villarreal J, Alvaro-Espinosa L, Fernandez-Barral A, Barbachano A, Dominguez O, Laughney AM, Megias D, Munoz A, Real FX (2019) Urothelial organoids originating from Cd49f(high) mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 10:4407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheer H, Robaire B (1980) Steroid delta 4–5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase in the rat epididymis during development. Endocrinology 107:948–953

    Article  CAS  PubMed  Google Scholar 

  • Schuijers J, Clevers H (2012) Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J 31:2685–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seishima R, Leung C, Yada S, Murad KBA, Tan LT, Hajamohideen A, Tan SH, Itoh H, Murakami K, Ishida Y, Nakamizo S, Yoshikawa Y, Wong E, Barker N (2019) Neonatal Wnt-dependent Lgr5 positive stem cells are essential for uterine gland development. Nat Commun 10:5378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shankar E, Song K, Corum SL, Bane KL, Wang H, Kao HY, Danielpour D (2016) A signaling network controlling androgenic repression of c-Fos protein in prostate adenocarcinoma cells. J Biol Chem 291:5512–5526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shum WW, Da SN, Belleannee C, McKee M, Brown D, Breton S (2011) Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol 301:C31–C43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shum WW, Da Silva N, McKee M, Smith PJ, Brown D, Breton S (2008) Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135:1108–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sipila P, Bjorkgren I (2016) Segment-specific regulation of epididymal gene expression. Reproduction 152:R91-99

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre N, Dufresne J, Rooney AA, Cyr DG (2003) Neonatal hypothyroidism alters the localization of gap junctional protein connexin 43 in the testis and messenger RNA levels in the epididymis of the rat. Biol Reprod 68:1232–1240

    Article  CAS  PubMed  Google Scholar 

  • Sun-Wada GH, Wada Y (2015) Role of vacuolar-type proton ATPase in signal transduction. Biochim Biophys Acta 1847:1166–1172

    Article  CAS  PubMed  Google Scholar 

  • Sun EL, Flickinger CJ (1979) Development of cell types and of regional differences in the postnatal rat epididymis. Am J Anat 154:27–55

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Traustadottir GA, Lagoni LV, Ankerstjerne LBS, Bisgaard HC, Jensen CH, Andersen DC (2019) The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev 46:17–27

    Article  CAS  PubMed  Google Scholar 

  • Turner TT, Johnston DS, Finger JN, Jelinsky SA (2007) Differential gene expression among the proximal segments of the rat epididymis is lost after efferent duct ligation. Biol Reprod 77:165–171

    Article  CAS  PubMed  Google Scholar 

  • Turunen HT, Sipila P, Pujianto DA, Damdimopoulos AE, Bjorkgren I, Huhtaniemi I, Poutanen M (2011) Members of the murine Pate family are predominantly expressed in the epididymis in a segment-specific fashion and regulated by androgens and other testicular factors. Reprod Biol Endocrinol 9:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viger RS, Robaire B (1995) Steady state steroid 5 alpha-reductase messenger ribonucleic acid levels and immunocytochemical localization of the type 1 protein in the rat testis during postnatal development. Endocrinology 136:5409–5415

    Article  CAS  PubMed  Google Scholar 

  • Viger RS, Robaire B (1996) The mRNAs for the steroid 5 alpha-reductase isozymes, types 1 and 2, are differentially regulated in the rat epididymis. J Androl 17:27–34

    CAS  PubMed  Google Scholar 

  • Wang A, Zhang Q, Wang Y, Li X, Li K, Li Y, Wang J, Li L, Chen H (2021) Inhibition of Gabrp reduces the differentiation of airway epithelial progenitor cells into goblet cells. Exp Ther Med 22:720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R (2005) Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 288:582–594

    Article  CAS  PubMed  Google Scholar 

  • Williams K, Frayne J, Hall L (1998) Expression of extracellular glutathione peroxidase type 5 (GPX5) in the rat male reproductive tract. Mol Hum Reprod 4:841–848

    Article  CAS  PubMed  Google Scholar 

  • Wissel S, Harzer H, Bonnay F, Burkard TR, Neumuller RA, Knoblich JA (2018) Time-resolved transcriptomics in neural stem cells identifies a v-ATPase/Notch regulatory loop. J Cell Biol 217:3285–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Turner SD, Hinton BT (2018) Alteration of transporter activities in the epididymides of infertile initial segment-specific Pten knockout mice. Biol Reprod :99:536–545

  • Xu B, Washington AM, Hinton BT (2014) PTEN signaling through RAF1 proto-oncogene serine/threonine kinase (RAF1)/ERK in the epididymis is essential for male fertility. Proc Natl Acad Sci U S A 111:18643–18648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Yang L, Lye RJ, Hinton BT (2010) p-MAPK1/3 and DUSP6 regulate epididymal cell proliferation and survival in a region-specific manner in mice. Biol Reprod 83:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen W, Li P, He B, Guo J, Zhang YL (2009) The novel epididymis-specific beta-galactosidase-like gene Glb1l4 is essential in epididymal development and sperm maturation in rats. Biol Reprod 80:696–706

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zheng M, Shi Q, Zhang L, Zhen W, Chen W, Zhang Y (2008) An epididymis-specific secretory protein HongrES1 critically regulates sperm capacitation and male fertility. PLoS ONE 3:e4106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The assistance of T. El Belaidi and S. Pinto (INRS) is appreciated. J. Tremblay (INRS) is thanked for his assistance with confocal microscopy and flow cytometry.

Funding

The study was funded by grants to DGC from the Canadian Institutes for Health Research (84576), Natural Sciences and Engineering Research Council (155065–06), and Canada Research Chairs Program. LP is the recipient of a studentship from the Fonds de Recherches du Québec-Nature et Technologie -Réseau Québécois en Reproduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Cyr.

Ethics declarations

Ethics approval

All the animal protocols used in this study were approved by the Institut National de la recherche Scientifique (INRS) University Animal Care Committee according to the guidelines of the Canadian Council on Animal Care.

Informed consent

All participants have given their verbal consent regarding their participation in this study and submission of this article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufresne, J., Gregory, M., Pinel, L. et al. Differential gene expression and hallmarks of stemness in epithelial cells of the developing rat epididymis. Cell Tissue Res 389, 327–349 (2022). https://doi.org/10.1007/s00441-022-03634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03634-9

Keywords

Navigation