Skip to main content
Log in

Role of sialylation of N-linked glycans in prion pathogenesis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mammalian prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of the prion protein or PrPC. PrPC and PrPSc are posttranslationally modified with N-linked glycans, which are sialylated at the terminal positions. More than 30 years have passed since the first characterization of the composition and structural diversity of N-linked glycans associated with the prion protein, yet the role of carbohydrate groups that constitute N-glycans and, in particular, their terminal sialic acid residues in prion disease pathogenesis remains poorly understood. A number of recent studies shed a light on the role of sialylation in the biology of prion diseases. This review article discusses several mechanisms by which terminal sialylation dictates the spread of PrPSc across brain regions and the outcomes of prion infection in an organism. In particular, relationships between the sialylation status of PrPSc and important strain-specific features including lymphotropism, neurotropism, and neuroinflammation are discussed. Moreover, emerging evidence pointing out the roles of sialic acid residues in prion replication, cross-species transmission, strain competition, and strain adaptation are reviewed. A hypothesis according to which selective, strain-specified recruitment of PrPC sialoglycoforms dictates unique strain-specific disease phenotypes is examined. Finally, the current article proposes that prion strains evolve as a result of a delicate balance between recruiting highly sialylated glycoforms to avoid an “eat-me” response by glia and limiting heavily sialylated glycoforms for enabling rapid prion replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

modified from Baskakov et al. (2018)

Fig. 4

Adapted from Baskakov and Katorcha (2016)

Similar content being viewed by others

References

  • Aguzzi A, Nuvolone M, Zhu C (2013) The immunology of prion diseases. Nat Rev Immunology 13(12):888–902

    Article  CAS  PubMed  Google Scholar 

  • Aminoff D, Bruegge WF, Bell WC, Sarpolis K, Williams R (1977) Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc Acad Natl Sci U S A 74(4):1521–1524

    Article  CAS  Google Scholar 

  • Atarashi R, Moore RA, Sim VL, Hughson AG, Dorward DW, Onwubiko HA et al (2007) Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat Methods 4:645–650

    Article  CAS  PubMed  Google Scholar 

  • Ayers JL, Schutt CR, Shikiya RA, Aguzzi A, Kincaid AE, Bartz JC (2011) The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLOS Pathog 7(3):e1001317

  • Baik SH, Kang S, Son SM, Mook-Jung I (2016) Microglia contributes to plaque growth by cell death due to uptake of amyloid β in the brain of Alzheimer’s disease mouse model. Glia 64(12):2274–2290. https://doi.org/10.1002/glia.23074

    Article  PubMed  Google Scholar 

  • Baskakov IV (2014) The many shades of prion strain adaptation. Prion 8(2):169–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Baskakov IV (2017) Limited understanding of the functional diversity of N-linked glycans as a major gap of prion biology. Prion 11(2):82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskakov IV (2021a) From posttranslational modifications to disease phenotype: a substrate selection hypothesis in neurodegenerative diseases. Int J Mol Sci 22(2). https://doi.org/10.3390/ijms22020901

  • Baskakov IV (2021b) On the reactive states of astrocytes in prion diseases. Prion 15(1):87–93. https://doi.org/10.1080/19336896.2021.1930852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskakov IV, Caughey B, Requena JR, Sevillano AM, Surewicz WK, Wille H (2019) The prion 2018 round tables (I): the structure of PrPSc. Prion 13(1):46–52. https://doi.org/10.1080/19336896.2019.1569450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskakov IV, Katorcha E (2016) Multifaceted role of sialylation in prion diseases. Front Neurosci 10:358

  • Baskakov IV, Katorcha E, Makarava N (2018) Prion strain-specific structure and pathology: a view from the perspective of glycobiology. Viruses 10(12):723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A et al (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335(6067):472–475

    Article  PubMed  Google Scholar 

  • Bessen RA, Marsh RF (1992) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73(2):329–334

    Article  PubMed  Google Scholar 

  • Bocharova OV, Breydo L, Salnikov VV, Gill AC, Baskakov IV (2005) Synthetic prions generated in vitro are similar to a newly identified subpopulation of PrPSc from sporadic Creutzfeldt-Jakob Disease PrP Sc Prot. Science 14:1222–1232

    CAS  Google Scholar 

  • Bolton DC, Meyer RK, Prusiner SB (1985) Scrapie PrP 27–30 is a sialoglycoprotein. J Virol 53(2):596–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford BM, Crocker PR, Mabbott NA (2014) Peripheral prion disease pathogenesis is unaltered in the absence of sialoadhesin (Siglec-1/CD169). Immunology 143(1):120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neuroscience 15(4):209–216

    Article  CAS  PubMed  Google Scholar 

  • Brown KL, Stewart K, Ritchie DL, Mabbott NA, Williams A, Fraser H et al (1999) Scrapie replication in lyphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5(11):1308–1312

    Article  CAS  PubMed  Google Scholar 

  • Cabral MG, Piteira AR, Silva Z, Ligeiro D, Brossmer R, Videira PA (2010) Human dendritic cells contain cell surface sialyltransferase activity. Immunol Lett 131(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Camacho MV, Telling G, Kong Q, Gambetti P, Notari S (2019) Role of prion protein glycosylation in replication of human prions by protein misfolding cyclic amplification. Lab Invest. https://doi.org/10.1038/s41374-019-0282-1

    Article  PubMed  Google Scholar 

  • Cancellotti E, Bradford BM, Tuzi NL, Hickey RD, Brown D, Brown KL et al (2010) Glycosylation of PrPC determines timing of neuroinvasion and targeting in the brain following transmissible spongiform encephalopathy infection by a peripheral route. J Virol 84(7):3464–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancellotti E, Mahal SP, Somerville R, Diack A, Brown D, Piccardo P et al (2013) Post-translational changes to PrP alter transmissible spongiform encephalopathy strain properties. EMBO J 32(5):756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll JA, Striebel JF, Rangel A, Woods T, Phillips K, Peterson KE et al (2016) Prion strain-specific structure and pathology: a view from the perspective of glycobiology PrPSc on neurons and glia are associated with similar expression profiles of neuroinflammatory genes: comparison of three prion strains. PLoS Pathog 12(4):e1005551

  • Castro-Seoane R, Hummerich H, Sweeting T, Tattum MH, Linehan JM, Fernandez de Marco M et al (2012) Plasmacytoid dendritic cells sequester high prion titres at early stages of prion infection. PLOS Pathog 8(2):e1002538

  • Caughey B, Raymond GJ, Bessen RA (1998) Strain-dependent differences in b-sheet conformations of abnormal prion protein. J Biol Chem 273(48):32230–32235

    Article  CAS  PubMed  Google Scholar 

  • Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819

    Article  CAS  PubMed  Google Scholar 

  • Colby DW, Giles K, Legname G, Wille H, Baskakov IV, DeArmond SJ et al (2009) Design and construction of diverse mammalian prion strains. Proc Acad Natl Sci Usa 106:20417–20422

    Article  CAS  Google Scholar 

  • Colby DW, Zhang Q, Wang S, Groth D, Legname G, Riesner D et al (2007) Prion detection by an amyloid seeding assay. Proc Acad Natl Sci Usa 104(52):20914–20919

    Article  CAS  Google Scholar 

  • Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318(5852):930–936

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Groth D, Prusiner SB, Kobata A (1989) Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochemistry 28(21):8380–8388

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Hiraoka N, Yeh JC (1999) C-type lectins and sialyl Lewis X oligosaccharides versatile roles in cell–cell interaction. J Cell Biol 147(3):467–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Montalban N, Baskakov IV (2012) Assessment of strain-specific PrPSc elongation rates revealed a transformation of PrPSc properties during Protein Misfolding Cyclic Amplification. PLoS ONE 7(7):0041210

    Article  Google Scholar 

  • Gonzalez-Montalban N, Makarava N, Savtchenko R, Baskakov IV (2011) Relationship between conformational stability and amplification efficiency of prions. Biochemistry 50(37):7933–7940

    Article  CAS  PubMed  Google Scholar 

  • Grasbon-Frodl E, Lorenz H, Mann U, Nitsch RM, Windl O, Kretzschmar HA (2004) Loss of glycosylation associated with the T183A mutation in human prion disease. Acta Neuropathol 108(6):476–484. https://doi.org/10.1007/s00401-004-0913-4

    Article  CAS  PubMed  Google Scholar 

  • Gross HJ, Merling A, Moldenhauer G, Schwartz-Albiez R (1996) Ecto-sialyltransferase of human B lymphocytes reconstitutes differentiation markers in the presence of exogenous CMP-N-acetyl neuraminic acid. Blood 87(12):5113–5126

    Article  CAS  PubMed  Google Scholar 

  • Halliez S, Reine F, Herzog L, Juamain E, Haik S, Rezaei H et al (2014) Accelerated, spleen-based titration of variant Creutzfeldt-Jakob disease infectivity in transgenic mice expressing human prion protein with sensitivity comparable to that of survival time bioassay. J Virol 88(15):8678–8686

    Article  PubMed  PubMed Central  Google Scholar 

  • Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P (2001) The human sialyltransferase family. Biochimie 83(8):727–737

    Article  CAS  PubMed  Google Scholar 

  • Hill AF, Butterworth RJ, Joiner S, Jackson G, Rossor MN, Thomas DJ et al (1999) Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353:183–189

    Article  CAS  PubMed  Google Scholar 

  • Hill AF, Joiner S, Beck JA, Campbell TA, Dickinson A, Poulter M et al (2006) Distinct glycoform ratios of protease resistant prion protein associated with PRNP point mutations. Brain 129(Pt 3):676–685. https://doi.org/10.1093/brain/awl013

    Article  PubMed  Google Scholar 

  • Huang FP, Farquhar CF, Mabbott NA, Bruce ME, MacPherson GG (2002) Migrating intestinal dendritic cells transport PrPSc from the gut. J Gen Virol 83:267–271

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Happonen KE, Burrola PG, O’Connor C, Hah N, Huang L et al (2021) Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. https://doi.org/10.1038/s41590-021-00913-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen AJG, Josefsson EC, Rumjantseva V, Liu QP, Falet H, Bergmeier W et al (2012) Desialylation accelerates platelet clearance after refrigeration and initiates GPIba metalloproteinase-mediated cleavage in mice. Blood 119(5):1263–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HE, Bian J, Kane SJ, Kim S, Selwyn V, Crowell J et al (2020) Incomplete glycosylation during prion infection unmasks a prion protein epitope that facilitates prion detection and strain discrimination. J Biol Chem 295(30):10420–10433. https://doi.org/10.1074/jbc.RA120.012796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karapetyan YE, Saa P, Mahal SP, Sferrazza GF, Sherman A, Sales N et al (2009) Prion strain discrimination based on rapid in vivo amplification and analysis by the cell panel assay. PLoS One 4(5):e5730

  • Katorcha E, Baskakov IV (2017) Analyses of N-linked glycans of PrPSc revealed predominantly 2,6-linked sialic acid residues. FEBS J 284(21):3727–3738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katorcha E, Baskakov IV (2018) Analysis of covalent modifications of amyloidogenic proteins using two-dimensional electrophoresis: prion protein and its sialylation. Methods Mol Biol 1779(241–255):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katorcha E, Daus ML, Gonzalez-Montalban N, Makarava N, Lasch P, Beekes M et al (2016a) Reversible off and on switching of prion infectivity via removing and reinstalling prion sialylation. Sci Rep 6:33119. https://doi.org/10.1038/srep33119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katorcha E, Gonzalez-Montalban N, Makarava N, Kovacs GG, Baskakov IV (2018) Prion replication environment defines the fate of prion strain adaptation. PLoS Pathog 14(6):e10007093. https://doi.org/10.1371/journal.ppat.1007093

    Article  CAS  Google Scholar 

  • Katorcha E, Klimova N, Makarava N, Savtchenko R, Pan X, Annunziata I et al (2015a) Knocking out of cellular neuraminidases Neu1, Neu3 or Neu4 does not affect sialylation status of the prion protein. PLoS ONE 10(11):e0143218. https://doi.org/10.1371/journal.pone.0143218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katorcha E, Makarava N, Savtchenko R, Baskakov IV (2015b) Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci Rep 5(1):16912. https://doi.org/10.1038/srep16912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katorcha E, Makarava N, Savtchenko R, D’Azzo A, Baskakov IV (2014) Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity. PLOS Pathog 10(9):e1004366. https://doi.org/10.1371/journal.ppat.1004366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katorcha E, Srivastava S, Klimova N, Baskakov IV (2016b) Sialylation of GPI anchors of mammalian prions is regulated in a host-, tissue- and cell-specific manner. J Biol Chem 291(33):17009–17019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann M, Blaser C, Takashima S, Schwartz-Albiez R, Tsuji S, Pircher H (1999) Identification of an alpha2,6-sialyltransferase induced early after lymphocyte activation. Int Immunol 11(5):731–738

    Article  CAS  PubMed  Google Scholar 

  • Klimova N, Makarava N, Baskakov IV (2015) The diversity and relationship of prion protein self-replicating states. Virus Res 207(1):113–119

    Article  CAS  PubMed  Google Scholar 

  • Kovacs GG, Makarava N, Savtchenko R, Baskakov IV (2013) Atypical and classical forms of the disease-associated state of the prion protein exhibit distinct neuronal tropism, deposition patterns, and lesion profiles. Am J Pathol 183(5):1539–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczius T, Haist I, Groschup MH (1998) Molecular analysis of bovine spongiform encephalopathy and scrapie strain variation. J Infect Dis 178(3):693–699. https://doi.org/10.1086/515337

    Article  CAS  PubMed  Google Scholar 

  • Kujala P, Raymond CR, Romeijn M, Godsave SF, van Kasteren SI, Wille H et al (2011) Prion uptake in the gut: identification of the first uptake and replication sites. PLOS Pathog 7(12):e1002449

  • Kushwaha R, Sinha A, Makarava N, Molesworth K, Baskakov IV (2021) Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases. Acta Neuropathol Commun 9(1):22. https://doi.org/10.1186/s40478-021-01123-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson VA, Collins SJ, Masters CL, Hill AF (2005) Prion protein glycosylation. J Neurochem 93:793–801

    Article  CAS  PubMed  Google Scholar 

  • Legname G, Baskakov IV, Nguyen HOB, Riesner D, Cohen FE, DeArmond SJ et al (2004) Synthetic mammalian prions. Science 305(5684):673–676

    Article  CAS  PubMed  Google Scholar 

  • Legname G, Nguyen HOB, Baskakov IV, Cohen FE, DeArmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Aca Sci USA 102(6):2168–2173

    Article  CAS  Google Scholar 

  • Linnartz-Gerlach B, Mathews M, Neumann H (2014) Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience 275(1):113–124

    Article  CAS  PubMed  Google Scholar 

  • Linnartz-Gerlach B, Schuy C, Shahraz A, Tenner AJ, Neumann H (2016) Sialylation of neurites inhibits complement-mediated macrophage removal in a human macrophage-neuron Co-Culture System. Glia 64(1):35–47

    Article  PubMed  Google Scholar 

  • Linnartz B, Bodea L-G, Neumann H (2012a) Microglia carbohydrate-binding receptors for neural repair. Cell Tissue Res 349:215–227

    Article  CAS  PubMed  Google Scholar 

  • Linnartz B, Kopatz J, Tenner AJ, Neumann H (2012b) Sialic acid on the neuronal glycocalyx prevents complement C1 binding and complement receptor-3-mediated removal by microglia. J Neurosci 32(3):946–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu ZY, Baker CA, Manuelidis L (2004) New molecular markers of early and progressive CJD brain infection. J Cell Biochem 93:644–652

    Article  CAS  PubMed  Google Scholar 

  • Makarava N, Baskakov IV (2013) The evolution of transmissible prions: the role of deformed templating. PLOS Pathog 9(12):e1003759

  • Makarava N, Chang JC-Y, Baskakov IV (2020a) Region-specific sialylation pattern of prion strains provides novel insight into prion neurotropism. Int J Mol Sci 21(3):828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Chang JC-Y, Kushwaha R, Baskakov IV (2019) Region-specific response of astrocytes to prion infection. Front Neurosci 13(1):e1048. https://doi.org/10.3389/fnins.2019.01048

    Article  Google Scholar 

  • Makarava N, Chang JC-Y, Molesworth K, Baskakov IV (2020b) Posttranslational modifications define course of prion strain adaptation and disease phenotype. J Clin Investig 130(8):4382–4395. https://doi.org/10.1172/JCI138677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Chang JC-Y, Molesworth K, Baskakov IV (2020c) Region-specific glial homeostatic signature in prion diseases is replaced by a uniform neuroinflammation signature, common for brain regions and prion strains with different cell tropism. Neurobiol Dis 137(1):e104783. https://doi.org/10.1016/j.nbd.2020.104783

    Article  CAS  Google Scholar 

  • Makarava N, Kovacs GG, Bocharova OV, Savtchenko R, Alexeeva I, Budka H et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild type animals. Acta Neuropathol 119(2):177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Kovacs GG, Savtchenko R, Alexeeva I, Budka H, Rohwer RG et al (2011) Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease. PLoS Pathogen 7(12):e1002419

  • Makarava N, Kovacs GG, Savtchenko R, Alexeeva I, Budka H, Rohwer RG et al (2012a) Stabilization of a prion strain of synthetic origin requires multiple serial passages. J Biol Chem 287(36):30205–30214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Kovacs GG, Savtchenko R, Alexeeva I, Ostapchenko VG, Budka H et al (2012b) A new mechanism for transmissible prion diseases. J Neurosci 32(21):7345–7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Mychko O, Chang JC-Y, Molesworth K, Baskakov IV (2021) The degree of astrocyte activation is predictive of the incubation time to prion disease. Acta Neuropathol Commun 9(1):87. https://doi.org/10.1186/s40478-021-01192-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Savtchenko R, Alexeeva I, Rohwer RG, Baskakov IV (2016) New molecular insight into mechanism of evolution of mammalian synthetic prions. Am J Pathol 186(4):1006–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarava N, Savtchenko R, Baskakov IV (2013) Selective amplification of classical and atypical prions using modified protein misfolding cyclic amplification. J Biol Chem 288(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Makarava N, Savtchenko R, Baskakov IV (2015) Two alternative pathways for generating transmissible prion disease de novo. Acta Neuropathol Commun 3(1):e69. https://doi.org/10.1186/s40478-015-0248-5

    Article  CAS  Google Scholar 

  • McCulloch L, Brown KL, Bradford BM, Hopkins J, Bailey M, Rajewsky K et al (2011) Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain prion infection in the spleen. PLOS Pathog 7(12):e1002402

  • Michel B, Meyerett-Reid C, Johnson T, Ferguson A, Wyckoff C, Pulford B et al (2012) Incunabular imminological events in prion trafficing. Sci Rep 2:440

    Article  PubMed  PubMed Central  Google Scholar 

  • Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A et al (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259

    Article  CAS  PubMed  Google Scholar 

  • Morales R, Hu PP, Duran-Aniotz C, Moda F, Diaz-Espinoza R, Chen B et al (2016) Strain-dependent profile of misfolded prion protein aggregates. Sci Rep 6(1):e20526. https://doi.org/10.1038/srep20526

    Article  CAS  Google Scholar 

  • Nakić N, Tran TH, Novokmet M, Andreoletti O, Lauc G, Legname G (2021) Site-specific analysis of N-glycans from different sheep prion strains. PLoS Pathog 17(2):e1009232. https://doi.org/10.1371/journal.ppat.1009232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasirikenari M, Veillon L, Collins CC, Azadi P, Lau JT (2014) Remodeling of marrow hematopoietic stem and progenitor cells by non-self ST6Gal-1 sialyltransferase. J Biol Chem 289(20):7178–7189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng PS, Bohm R, Hartley-Tassell LE, Steen JA, Wang H, Lukowski SW et al (2014) Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors. Nat Commun 5:5750. https://doi.org/10.1038/ncomms6750

    Article  CAS  PubMed  Google Scholar 

  • Nishina K, Deleault NR, Mahal S, Baskakov I, Luhrs T, Riek R et al (2006) The stoichiometry of host PrPC glycoforms modulates the efficiency of PrPSc formation in vitro. Biochemistry 45(47):14129–14139

    Article  CAS  PubMed  Google Scholar 

  • Pan T, Li R, Kang SC, Pastore M, Wong BS, Ironside J et al (2005) Biochemical fingerprints of prion diseases: scrapie prion protein in human prion diseases that share prion genotype and type. J Neurochem 92(1):132–142

    Article  CAS  PubMed  Google Scholar 

  • Peretz D, Scott M, Groth D, Williamson A, Burton D, Cohen FE et al (2001) Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci 10(4):854–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piro JR, Harris BT, Nishina K, Soto C, Morales R, Rees JR et al (2009) Prion protein glycosylation is not requiered for strain-specific neurotropism. J Virology 83(11):5321–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich GA, Croci DO (2012) Regulatori circuits mediated by lectin-glycan interaction in autoimmunity and cancer. Immunity 36:322–335

    Article  CAS  PubMed  Google Scholar 

  • Rifat S, Kang TJ, Mann D, Zhang L, Puche AC, Stamatos NM et al (2008) Expression of sialyltransferase activity on intact human neutrophils. J Leukoc Biol 84:1075–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie MA, Gill AC, Deery MJ, Lilley K (2002) Precursor ion scanning for detection and structural characterization of heterogeneous glycopeptide mixtures. J Am Soc Mass Spectrom 13(9):1065–1077. https://doi.org/10.1016/s1044-0305(02)00421-x

    Article  CAS  PubMed  Google Scholar 

  • Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ et al (1999) Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci U S A 96:13044–13049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M et al (1998) Eight prion strains have PrP Sc molecules with different conformations. Nat Med 4(10):1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Samraj AN, Pearce OMT, Laubli H, Crittenden AN, Bergfeld AK, Banda K et al (2015) A red meat-derived glycan promotes inflammation and cancer progression. Proc Acad Natl Sci U S A 112(2):542–547

    Article  CAS  Google Scholar 

  • Sandberg MK, Al-Doujaily H, Sharps B, De Oliveira MW, Schmidt C, Richard-Londt A et al (2014) Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked. Nat Commun 5:e4347. https://doi.org/10.1038/ncomms5347

    Article  CAS  Google Scholar 

  • Schauer R, Srinivasan GV, Wipfer D, Kniep B, Schwartz-Albiez R (2011) O-acetylated sialic acids and their role in immune defence, in The molecular immunology of complex carbohydrates-3, ed. A.M. Wu. (New York, Dordrecht, Heidelberg, London: Sprinenger Science) 525–548

  • Schwartz-Albiez R, Merling A, Martin S, Haas R, Gross HJ (2004) Cell surface sialylation and ecto-sialyltransferase activity of human CD34 progenitors from peripheral blood and bone marrow. Glycoconj J 21(8–9):451–459

    Article  CAS  PubMed  Google Scholar 

  • Sinha A, Kushwaha R, Molesworth K, Mychko O, Makarava N, Baskakov IV (2021) Phagocytic activities of reactive microglia and astrocytes associated with prion diseases are dysregulated in opposite directions. Cells 10(7):1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spagnolli G, Rigoli M, Orioli S, Sevillano AM, Faccioli P, Wille H et al (2019) Full atomistic model of prion structure and conversion. PLoS Pathog 15(7):e1007864. https://doi.org/10.1371/journal.ppat.1007864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spassov S, Beekes M, Naumann D (2006) Structural differences between TSEs strains investigated by FT-IR spectroscopy. Biochim Biophys Acta 1760(7):1138–1149

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Katorcha E, Daus ML, Lasch P, Beekes M, Baskakov IV (2017) Sialylation controls prion fate in vivo. J Biol Chem 292(6):2359–2368. https://doi.org/10.1074/jbc.M116.768010

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Katorcha E, Makarava N, Barrett JP, Loane DJ, Baskakov IV (2018) Inflammatory response of microglia to prions is controlled by sialylation of PrPSc. Sci Rep 8(1):e11326. https://doi.org/10.1038/s41598-018-29720-z

    Article  CAS  Google Scholar 

  • Srivastava S, Makarava N, Katorcha E, Savtchenko R, Brossmer R, Baskakov IV (2015) Post-conversion sialylation of prions in lymphoid tissues. Proc Acad Natl Sci U S A 112(48):E6654-6662. https://doi.org/10.1073/pnas.1517993112

    Article  CAS  Google Scholar 

  • Stahl N, Baldwin MA, Hecker R, Pan KM, Burlingame AL, Prusiner SB (1992) Glycosylinositol phospholipid anchors of the scrapie and cellular prion proteins contain sialic acid. Biochemistry 31:5043–5053

    Article  CAS  PubMed  Google Scholar 

  • Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL et al (1993) Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32:1991–2002

    Article  CAS  PubMed  Google Scholar 

  • Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51(2):229–240

    Article  CAS  PubMed  Google Scholar 

  • Stimson E, Hope J, Chong A, Burlingame AL (1999) Site-specific characterization of the N-linked glycans of murine prion protein by high-performance liquid chromatography/electrospray mass spectrometry and exoglycosidase digestions. Biochemistry 38:4885–4895

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Breydo L, Makarava N, Yang Q, Bocharova OV, Baskakov IV (2007) Site-specific conformational studies of PrP amyloid fibrils revealed two cooperative folding domain within amyloid structure. J Biol Chem 282:9090–9097

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Makarava N, Lee CI, Laksanalamai P, Robb FT, Baskakov IV (2008) Conformational stability of PrP amyloid firbils controls their smallest possible fragment size. J Mol Biol 376:1155–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takakura I, Muiyazawa K, Kanaya T, Itani W, Watanabe K, Ohwada S et al (2011) Orally administered prion protein is incorporated by M cells and spreads into lymphoid tissues with macrophages in prion protein knockout mice. Am J Pathol 179(3):1301–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Siwu ERO, Minami K, Hasegawa K, Nozaki S, Kanayama Y et al (2010) Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed 49:8195–8200

    Article  CAS  Google Scholar 

  • Thomzig A, Spassov S, Friedrich M, Naumann D, Beekes M (2004) Discriminating scrapie and bovine spongiform encephalopathy isolates by infrared spectroscopy of pathological prion protein. J Biol Chem 279(33847):33854

    Google Scholar 

  • Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A et al (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLOS Pathog 6(4):e1000859

  • Turk E, Teplow DB, Hood LE, Prusiner SB (1988) Purification and properties of the cellular and scrapie hamster prion proteins. Eur J Biochem 176(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Tuzi NL, Cancellotti E, Baybutt H, Blackford L, Bradford B, Plinston C et al (2008) Host PrP glycosylation: a major factor determining the outcome of prion infection. PLOS Biology 6(4):e100

  • Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The a-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel á-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry 49(44):9488–9497

    Article  CAS  PubMed  Google Scholar 

  • Varki A (1999) "Sialic Acids," in Essentials of Glycobiology, eds. A. Varki, R. Cummings, J. Esko, H. Freeze, G. Hart & J. Marth. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press) 195–210

  • Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varki A (2010) Uniquely human evolution of sialic acid genetics and biology. Proc Acad Natl Sci U S A 107:8939–8946

    Article  CAS  Google Scholar 

  • Vincenti JE, Murphy L, Grabert K, McColl BW, Cancellotti E, Freeman TC et al (2016) Defining the microglia response during the time course of chronic neurodegeneration. J Virol 90(6):3003–3017

    Article  CAS  PubMed Central  Google Scholar 

  • Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ et al (2001) Tissues distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunobloting assay. Lancet 358:171–180

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chen X, Wei A, Yu X, Niang B, Zhang J (2015) α2,6-linked sialic acids on N-glycans modulate the adhesion of hepatocarcinoma cells to lymph nodes. Tumor Biol 36(2):885–892

    Article  CAS  Google Scholar 

  • Zanusso G, Farinazzo A, Prelli F, Fiorini F, Gelati M, Ferrari S et al (2004) Identification of distinct N-terminal truncated forms of prion protein in different Creutzfeldt-Jakob disease subtypes. J Biol Chem 279:38936–38942

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Sun J, Hao L, Liu C, Ma H, Jia L (2013) Modification of glycosylation mediates the invasive properties of murine hepatocarcinoma cell lines to lymph nodes. PLoS One 8(6):e65218

  • Zou RS, Fujioka H, Guo JP, Xiao X, Shimoji M, Kong C et al (2011) Characterization of spontaneously generated prion-like conformers in cultured cells. Aging (albany NY) 3(10):968–984. https://doi.org/10.18632/aging.100370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kara Molesworth for editing this manuscript.

Funding

This work was supported by NIH grants NS045585 and AI128925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia V. Baskakov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 172 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarava, N., Baskakov, I.V. Role of sialylation of N-linked glycans in prion pathogenesis. Cell Tissue Res 392, 201–214 (2023). https://doi.org/10.1007/s00441-022-03584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03584-2

Keywords

Navigation