Skip to main content
Log in

Flow-dependent differentiation of cultured adrenal cells under different stimuli

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

It still remains unclear how the functional organisation of the adrenal cortex arises. One aim of this study was to create a setup which allows for the establishment of a concentration gradient in vitro. This was achieved by a continuous flow of medium through the culture flask which caused differences in glucose and cortisol concentrations as well as in pH values between the sites of inflow and outflow of medium. Using real-time polymerase chain reaction, we found that a continuous supply of 1 ml medium per hour significantly increased the expression of MC2R, CYP11B1 and CYP17A1 genes of NCI-H295R cells in the distal area of the flask as compared with the proximal part. The expression of the AT1R showed a reverse regulation. The addition of dexamethasone to the medium led to an increase in gene expression of MC2R while AT1R was downregulated. Moreover, we detected a higher expression of CYP11B2 and a decreased expression of CYP11B1 when endothelial cell–conditioned medium (ECCM) was added to the inflow. Our experiments show that a directed medium delivery system creates different gradients and affects the functional differentiation of the NCI-H295R cells. Also, our results emphasise that products of endothelial cells have additional effects on the differentiation of the cultured adrenal cortical cells. Our results are in support that the regulation of the adrenal zonation is possible through different concentration gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ansurudeen I, Willenberg HS, Kopprasch S, Krug AW, Ehrhart-Bornstein M, Bornstein SR (2009) Endothelial factors mediate aldosterone release via PKA-independent pathways. Mol Cell Endocrinol 300:66–70

    Article  CAS  Google Scholar 

  • Rosolowsky LJ, Campbell WB (1994) Endothelial cells stimulate aldosterone release from bovine adrenal glomerulosa cells. Am J Physiol Endocrinol Metab 266:E107–E117

    Article  CAS  Google Scholar 

  • Bassett MH, Zhang Y, Clyne C, White PC, Rainey WE (2002) Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1. J Mol Endocrinol 28:125–135

    Article  CAS  Google Scholar 

  • Berthon A, Sahut-Barnola I, Lambert-Langlais S, de Joussineau C, Damon-Soubeyrand C, Louiset E, Taketo MM, Tissier F, Bertherat J, Lefrançois-Martinez AM, Martinez A, Val P (2010) Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum Mol Genet 19:1561–1576

    Article  CAS  Google Scholar 

  • Berthon A, Drelon C, Ragazzon B, Boulkroun S, Tissier F, Amar L, Samson-Couterie B, Zennaro MC, Plouin PF, Skah S, Plateroti M, Lefèbvre H, Sahut-Barnola I, Batisse-Lignier M, Assié G, Lefrançois-Martinez AM, Bertherat J, Martinez A, Val P (2014) WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 23:889–905

    Article  CAS  Google Scholar 

  • Bogdarina IG, King PJ, Clark AJ (2009) Characterization of the angiotensin (AT1b) receptor promoter and its regulation by glucocorticoids. J Mol Endocrinol 43:73–80

    Article  CAS  Google Scholar 

  • Drelon C, Berthon A, Mathieu M, Martinez A, Val P (2015) Adrenal cortex tissue homeostasis and zonation: a WNT perspective. Mol Cell Endocrinol 408:156–164

    Article  CAS  Google Scholar 

  • Drelon C, Berthon A, Sahut-Barnola I, Mathieu M, Dumontet T, Rodriguez S, Batisse-Lignier M, Tabbal H, Tauveron I, Lefrançois-Martinez AM, Pointud JC, Gomez-Sanchez CE, Vainio S, Shan J, Sacco S, Schedl A, Stratakis CA, Martinez A, Val P (2016) PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat Commun 7:12751

    Article  CAS  Google Scholar 

  • Dringenberg T, Schwitalla M, Haase M, Scherbaum WA, Willenberg HS (2013) Control of CYP11B2/CYP11B1 expression ratio and consequences for the zonation of the adrenal cortex. Horm Metab Res 45:81–85

    CAS  PubMed  Google Scholar 

  • Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, La Rocca RV (1990) Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res 50:5488–5496

    CAS  PubMed  Google Scholar 

  • Heikkilä M, Peltoketo H, Leppäluoto J, Ilves M, Vuolteenaho O, Vainio S (2002) Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 143:4358–4365

    Article  Google Scholar 

  • Hornsby PJ (1987) Physiological and pathological effects of steroids on the function of the adrenal cortex. J Steroid Biochem 27:1161–1171

    Article  CAS  Google Scholar 

  • Hornsby PJ (2012) Adrenarche: a cell biological perspective. J Endocrinol 214:113–119

    Article  CAS  Google Scholar 

  • Huang CC, Miyagawa S, Matsumaru D, Parker KL, Yao HH (2010) Progenitor cell expansion and organ size of mouse adrenal is regulated by sonic hedgehog. Endocrinology 151:1119–1128

    Article  CAS  Google Scholar 

  • Kim AC, Hammer GD (2007) Adrenocortical cells with stem/progenitor cell properties: recent advances. Mol Cell Endocrinol 265–266:10–16

    Article  Google Scholar 

  • Kim AC, Reuter AL, Zubair M, Else T, Serecky K, Bingham NC, Lavery GG, Parker KL, Hammer GD (2008) Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 135:2593-2602

  • Lander AD (2013) How cells know where they are. Science 339:923–927

    Article  CAS  Google Scholar 

  • Nickerson PA (1976) The adrenal cortex in spontaneously hypertensive rats. A quantitative ultrastructural study. Am J Pathol 84:545–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira EF, Rainey WE (2010) Regulation of aldosterone synthase by activator transcription factor/cAMP response element-binding protein family members. Endocrinology 151:1060–1070

    Article  CAS  Google Scholar 

  • Nussdorfer GG, Rossi GP, Malendowicz LK, Mazzocchi G (1999) Autocrine-paracrine endothelin system in the physiology and pathology of steroid-secreting tissues. Pharmacol Rev 51:403–438

    CAS  PubMed  Google Scholar 

  • Paramonova I, Haase M, Mülders-Opgenoorth B, Ansurudeen-Rafi I, Bornstein SR, Papewalis C, Schinner S, Schott M, Scherbaum WA, Willenberg HS (2010) The effects of the endothelium on adrenal steroidogenesis and growth are mainly mediated by proteins other than endothelin-1. Horm Metab Res 42:840–845

    Article  CAS  Google Scholar 

  • Pascoe L, Curnow KM, Slutsker L, Rösler A, White PC (1992) Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc Natl Acad Sci USA 89:4996–5000

    Article  CAS  Google Scholar 

  • Sackmann S, Lichtenauer U, Shapiro I, Reincke M, Beuschlein F (2011) Aldosterone producing adrenal adenomas are characterized by activation of calcium/calmodulin-dependent protein kinase (CaMK) dependent pathways. Horm Metab Res 43:106–111

    Article  CAS  Google Scholar 

  • Sasano H, Imatani A, Shizawa S, Suzuki T, Nagura H (1995) Cell proliferation and apoptosis in normal and pathologic human adrenal. Mod Pathol 8:11–17

    CAS  PubMed  Google Scholar 

  • Schwafertz C, Schinner S, Kühn MC, Haase M, Asmus A, Mülders-Opgenoorth B, Ansurudeen I, Hornsby PJ, Morawietz H, Oetjen E, Schott M, Willenberg HS (2017) Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor. Mol Cell Endocrinol 441:108–115

    Article  CAS  Google Scholar 

  • Topor LS, Asai M, Dunn J, Majzoub JA (2011) Cortisol stimulates secretion of dehydroepiandrosterone in human adrenocortical cells through inhibition of 3betaHSD2. J Clin Endocrinol Metab 96:E31–E39

    Article  CAS  Google Scholar 

  • Vinson GP (2016) Functional zonation of the adult mammalian adrenal cortex. Front Neurosci 10:238

    Article  Google Scholar 

  • Walczak EM, Kuick R, Finco I, Bohin N, Hrycaj SM, Wellik DM, Hammer GD (2014) Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. Mol Endocrinol 28:1471–1486

    Article  Google Scholar 

  • Wang XL, Bassett M, Zhang Y, Yin S, Clyne C, White PC, Rainey WE (2000) Transcriptional regulation of human 11beta-hydroxylase (hCYP11B1). Endocrinology 141:3587–3594

    Article  CAS  Google Scholar 

  • Willenberg HS, Schinner S, Ansurudeen I (2008) New mechanisms to control aldosterone synthesis. Horm Metab Res 40:435–441

    Article  CAS  Google Scholar 

  • Wolkersdorfer GW, Bornstein SR (1998) Tissue remodelling in the adrenal gland. Biochem Pharmacol 56:163–171

    Article  CAS  Google Scholar 

Download references

Funding

The authors received intramural funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger S. Willenberg.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedrich, F., Mueller, K., Bruch, P.G. et al. Flow-dependent differentiation of cultured adrenal cells under different stimuli. Cell Tissue Res 384, 325–331 (2021). https://doi.org/10.1007/s00441-021-03432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03432-9

Keywords

Navigation