Skip to main content

Advertisement

Log in

Characterization of the structure, vascularity, and stem/progenitor cell populations in porcine Achilles tendon (PAT)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This study aimed to characterize porcine Achilles tendon (PAT) in terms of its structural components, vascularity, and resident tendon cells. We found that PAT is composed of a paratenon sheath, a core of fascicles, and an endotenon/interfascicular matrix (IFM) that encases the fascicle bundles. We analyzed each of these three tendon components structurally using tissue sections and by isolating cells from each component and analyzing in vitro. Many blood vessel-like tissues were present in the paratenon and IFM but not in fascicles, and the vessels in the paratenon and IFM appeared to be inter-connected. Cells isolated from the paratenon and IFM displayed characteristics of vascular stem/progenitor cells expressing the markers CD105, CD31, with α-smooth muscle actin (α-SMA) localized surrounding blood vessels. The isolated cells from paratenon and IFM also harbored abundant stem/progenitor cells as evidenced by their ability to form colonies and express stem cell markers including CD73 and CD146. Furthermore, we demonstrate that both paratenon and IFM-isolated cells were capable of undergoing multi-differentiation. In addition, both paratenon and IFM cells expressed elastin, osteocalcin, tubulin polymerization promoting protein (TPPP), and collagen IV, whereas fascicle cells expressed none of these markers, except collagen I. The neurotransmitter substance P (SP) was also found in the paratenon and IFM-localized surrounding blood vessels. The findings of this study will help us to better understand the vascular and cellular mechanisms of tendon homeostasis, injury, healing, and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ackermann PW, Li J, Lundeberg T, Kreicbergs A (2003) Neuronal plasticity in relation to nociception and healing of rat Achilles tendon. J Orthop Res 21:432–441

    Article  PubMed  Google Scholar 

  • Ackermann PW, Salo P, Hart DA (2016) Tendon innervation. In: Ackermann PW, Hart, D.A. (ed) Metabolic influences on risk for tendon disorders 920:35–52

  • Ahmed IM, Lagopoulos M, McConnell P, Soames RW, Sefton GK (1998) Blood supply of the Achilles tendon. J Orthop Res 16:591–596

    Article  CAS  PubMed  Google Scholar 

  • Andersson G, Danielson P, Alfredson H, Forsgren S (2007) Nerve-related characteristics of ventral paratendinous tissue in chronic Achilles tendinosis. Knee Surg Sports Traumatol Arthrosc 15:1272–1279

    Article  PubMed  Google Scholar 

  • Andersson G, Danielson P, Alfredson H, Forsgren S (2008) Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon. Regul Pept 150:81–87

    Article  CAS  PubMed  Google Scholar 

  • Barbe MF, Hilliard BA, Fisher PW, White AR, Delany SP, Iannarone VJ, Harris MY, Amin M, Cruz GE, Popoff SN (2019) Blocking substance P signaling reduces musculotendinous and dermal fibrosis and sensorimotor declines in a rat model of overuse injury. Connect Tissue Res 1–16

  • Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212:211–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Bjur D, Alfredson H, Forsgren S (2005) The innervation pattern of the human Achilles tendon: studies of the normal and tendinosis tendon with markers for general and sensory innervation. Cell Tissue Res 320:201–206

    Article  PubMed  Google Scholar 

  • Boudko SP, Danylevych N, Hudson BG, Pedchenko VK (2018) Basement membrane collagen IV: isolation of functional domains. Methods Cell Biol 143:171–185

    Article  CAS  PubMed  Google Scholar 

  • Burssens P, Steyaert A, Forsyth R, van Ovost EJ, Depaepe Y, Verdonk R (2005) Exogenously administered substance P and neutral endopeptidase inhibitors stimulate fibroblast proliferation, angiogenesis and collagen organization during Achilles tendon healing. Foot Ankle Int 26:832–839

    Article  PubMed  Google Scholar 

  • Cadby JA, Buehler E, Godbout C, van Weeren PR, Snedeker JG (2014) Differences between the cell populations from the peritenon and the tendon core with regard to their potential implication in tendon repair. PLoS One 9:e92474

    Article  PubMed  PubMed Central  Google Scholar 

  • Dederer KM, Tennant JN (2019) Anatomical and functional considerations in Achilles tendon lesions. Foot Ankle Clin 24:371–385

    Article  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Doral MN, Alam M, Bozkurt M, Turhan E, Atay OA, Dönmez G, Maffulli N (2010) Functional anatomy of the Achilles tendon. Knee Surg Sports Traumatol Arthrosc 18:638–643

    Article  PubMed  Google Scholar 

  • Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW (2014) Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One 9:e96113

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan TPD, Hu DE, Guard S, Gresham GA, Watling KJ (1993) Stimulation of angiogenesis by substance P and interleukin-1 in the rat and its inhibition by NK1 or interleukin-1 receptor antagonists. Br J Pharmacol 110:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenwick SA, Hazleman BL, Riley GP (2002) The vasculature and its role in the damaged and healing tendon. Arthritis Res 4:252–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Geevarghese A, Herman IM (2014) Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Translational research: the journal of laboratory and clinical medicine 163:296–306

    Article  Google Scholar 

  • Godinho MSC, Thorpe CT, Greenwald SE, Screen HRC (2017) Elastin is localised to the interfascicular matrix of energy storing tendons and becomes increasingly disorganised with ageing. Scientific reports 7:9713–9713

    Article  PubMed  PubMed Central  Google Scholar 

  • Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, Kronenberg MS, Jiang X, Maye P, Adams DJ, Rowe DW, Aguila HL, Kalajzic I (2012) In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey T, Flamenco S, Fan C-M (2019) A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nat Cell Biol 21:1490–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10:312–320

    Article  CAS  PubMed  Google Scholar 

  • Kapetanakis S, Gkasdaris G, Daneva E, Givissis P, Papathanasiou J, Xanthos T (2017) Mechanoreceptors of the Achilles tendon: a histomorphological study in pigs with clinical significance for humans. Muscles Ligaments Tendons J 7:558–563

    Article  PubMed  Google Scholar 

  • Lam FF, Yip AL (2000) Unique gradual and sustained vasodilator response to substance P in the rabbit knee joint. Eur J Pharmacol 400:327–335

    Article  CAS  PubMed  Google Scholar 

  • Lv FJ, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32:1408–1419

    Article  CAS  PubMed  Google Scholar 

  • Maffulli N, Sharma P, Luscombe KL (2004) Achilles tendinopathy: aetiology and management. J R Soc Med 97:472–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E (2014) Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells 7:118–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Mienaltowski MJ, Adams SM, Birk DE (2013) Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Eng Part A 19:199–210

    Article  CAS  PubMed  Google Scholar 

  • Monteiro I, Vigano S, Faouzi M, Treilleux I, Michielin O, Ménétrier-Caux C, Caux C, Romero P, de Leval L (2018) CD73 expression and clinical significance in human metastatic melanoma. Oncotarget 9

  • Nichols AEC, Best KT, Loiselle AE (2019) The cellular basis of fibrotic tendon healing: challenges and opportunities. Transl Res 209:156–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM (2010) Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A 16:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Snedeker JG, Foolen J (2017) Tendon injury and repair – a perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 63:18–36

    Article  PubMed  Google Scholar 

  • Sodersten F, Hultenby K, Heinegard D, Johnston C, Ekman S (2013) Immunolocalization of collagens (I and III) and cartilage oligomeric matrix protein in the normal and injured equine superficial digital flexor tendon. Connect Tissue Res 54:62–69

    Article  PubMed  Google Scholar 

  • Staverosky JA, Pryce BA, Watson SS, Schweitzer R (2009) Tubulin polymerization-promoting protein family member 3, Tppp3, is a specific marker of the differentiating tendon sheath and synovial joints. Dev Dyn 238:685–692

    Article  CAS  PubMed  Google Scholar 

  • Steyaert AE, Burssens PJ, Vercruysse CW, Vanderstraeten GG, Verbeeck RM (2006) The effects of substance P on the biomechanic properties of ruptured rat Achilles’ tendon. Arch Phys Med Rehabil 87:254–258

    Article  PubMed  Google Scholar 

  • Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, Qiu L, Liu X, Ding Z, Deng X (2019) CD73 expression on mesenchymal stem cells dictates the reparative properties via its anti-inflammatory activity. Stem Cells Int 2019:8717694

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan Q, Lui PPY, Lee YW (2013) In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells Dev 22:3128–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Tempfer H, Traweger A (2015) Tendon vasculature in health and disease. Front Physiol 6:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Tempfer H, Wagner A, Gehwolf R, Lehner C, Tauber M, Resch H, Bauer HC (2009) Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers. Histochem Cell Biol 131:733–741

    Article  CAS  PubMed  Google Scholar 

  • Theobald P, Benjamin M, Nokes L, Pugh N (2005) Review of the vascularisation of the human Achilles tendon. Injury 36:1267–1272

    Article  CAS  PubMed  Google Scholar 

  • Thorpe CT, Peffers MJ, Simpson D, Halliwell E, Screen HR, Clegg PD (2016) Anatomical heterogeneity of tendon: fascicular and interfascicular tendon compartments have distinct proteomic composition. Sci Rep 6:20455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe CT, Riley GP, Birch HL, Clegg PD, Screen HRC (2016) Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons. Acta Biomater 42:308–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Walia B, Huang AH (2019) Tendon stem progenitor cells: understanding the biology to inform therapeutic strategies for tendon repair. J Orthop Res 37:1270–1280

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang X, Huang H, Xia Y, Yao Y, Mak AF, Yung PS, Chan KM, Wang L, Zhang C, Huang Y, Mak KK (2017) Osteocalcin expressing cells from tendon sheaths in mice contribute to tendon repair by activating Hedgehog signaling. Elife 6

  • Williams JG (1986) Achilles tendon lesions in sport. Sports Med 3:114–135

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Hu JJ, Yang L, Zheng ZF, An CR, Wu BB, Zhang C, Shen WL, Liu HH, Chen JL, Heng BC, Guo GJ, Chen X, Ouyang HW (2016) Single-cell analysis reveals a nestin(+) tendon stem/progenitor cell population with strong tenogenic potentiality. Sci Adv 2:e1600874

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhu J, Zhou Y, Thampatty BP, Wang JHC (2019) Tendon stem/progenitor cells and their interactions with extracellular matrix and mechanical loading. Stem Cells Int 2019:3674647–3674647

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Pan T, Im H-J, Fu FH, Wang JHC (2011) Differential properties of human ACL and MCL stem cells may be responsible for their differential healing capacity. BMC Medicine 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang JH (2010) Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord 11:10

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The funding source for this study was in part from the National Institutes of Health under award numbers AR061395, AR065949, and AR070340 (JHW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H.-C. Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, F., Williamson, K.M. et al. Characterization of the structure, vascularity, and stem/progenitor cell populations in porcine Achilles tendon (PAT). Cell Tissue Res 384, 367–387 (2021). https://doi.org/10.1007/s00441-020-03379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03379-3

Keywords

Navigation