Skip to main content

Advertisement

Log in

Reducing macrophage numbers alleviates temporomandibular joint ankylosis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

A Correction to this article was published on 18 November 2019

This article has been updated

Abstract

Temporomandibular joint (TMJ) ankylosis is a severe joint disease mainly caused by trauma that leads to a series of oral and maxillofacial function disorders and psychological problems. Our series of studies indicate that TMJ ankylosis development is similar to fracture healing and that severe trauma results in bony ankylosis instead of fibrous ankylosis. Macrophages are early infiltrating inflammatory cells in fracture and play a critical role in initiating fracture repair. We hypothesize that the large numbers of macrophages in the early phase of TMJ ankylosis trigger ankylosed bone mass formation and that the depletion of these macrophages in the early phase could inhibit the development of TMJ ankylosis. By analysing human TMJ ankylosis specimens, we found large numbers of infiltrated macrophages in the less-than-1-year ankylosis samples. A rabbit model of TMJ bony ankylosis was established and large numbers of infiltrated macrophages were found at 4 days post-operation. Local clodronate liposome (CLD-lip) injection, which depleted macrophages, alleviated the severity of ankylosis compared with local phosphate-buffered saline (PBS)-loaded liposome (PBS-lip) injection (macrophage number, PBS-lips vs. CLD-lips: 626.03 ± 164.53 vs. 341.4 ± 108.88 n/mm2; ankylosis calcification score, PBS-lips vs. CLD-lips: 2.11 ± 0.78 vs. 0.78 ± 0.66). Histological results showed that the cartilage area was reduced in the CLD-lip-treated side (PBS-lips vs. CLD-lips: 6.82 ± 4.42% vs. 2.71 ± 2.78%) and that the Wnt signalling regulating cartilage formation was disrupted (Wnt5a expression decreased 60% and Wnt4 expression decreased 73%). Thus, our study showed that large numbers of macrophages infiltrated during the early phase of ankylosis and that reducing macrophage numbers alleviated ankylosis development by reducing cartilage formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 18 November 2019

    The article “Reducing macrophage numbers alleviates temporomandibular joint ankylosis”, written by Lu Zhao, E Xiao, Linhai He, Denghui Duan, Yang He, Shuo Chen, Yi Zhang and Yehua Gan, was originally published electronically on the publisher’s internet portal.

References

  • Alexander KA, Chang MK, Maylin ER, Kohler T, Muller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26:1517–1532

    Article  CAS  PubMed  Google Scholar 

  • Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrera P, Blom A, van Lent PL, van Bloois L, Beijnen JH, van Rooijen N, de Waal Malefijt MC, van de Putte LB, Storm G, van den Berg WB (2000) Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis. Arthritis Rheum 43:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Blom AB, van Lent PL, Holthuysen AE, van der Kraan PM, Roth J, van Rooijen N, van den Berg WB (2004) Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 12:627–635

    Article  Google Scholar 

  • Bonjour JP, Rizzoli R (1990) Clodronate in hypercalcemia of malignancy. Calcif Tissue Int 46(Suppl):S20–S25

    Article  PubMed  Google Scholar 

  • Bradley EW, Drissi MH (2010) WNT5A regulates chondrocyte differentiation through differential use of the CaN/NFAT and IKK/NF-κB pathways. Mol Endocrinol 24:1581–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browder W, Williams D, Lucore P, Pretus H, Jones E, McNamee R (1988) Effect of enhanced macrophage function on early wound healing. Surgery 104:224–230

    CAS  PubMed  Google Scholar 

  • Ceponis A, Waris E, Monkkonen J, Laasonen L, Hyttinen M, Solovieva SA, Hanemaaijer R, Bitsch A, Konttinen YT (2001) Effects of low-dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen-induced arthritis in rabbits. Arthritis Rheum 44:1908–1916

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, Giannobile W, Shi S, Wang CY (2007) Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282:30938–30948

    Article  CAS  PubMed  Google Scholar 

  • Cheung LK, Shi XJ, Zheng LW (2007) Surgical induction of temporomandibular joint ankylosis: an animal model. J Oral Maxillofac Surg 65:993–1004

    Article  PubMed  Google Scholar 

  • Church V, Nohno T, Linker C, Marcelle C, Francis-West P (2002) Wnt regulation of chondrocyte differentiation. J Cell Sci 115:4809–4818

    Article  CAS  PubMed  Google Scholar 

  • Danenberg HD, Fishbein I, Gao J, Mönkkönen J, Reich R, Gati I, Moerman E, Golomb G (2002) Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation 106:599–605

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Wang C (2013) Harnessing the power of macrophages/monocytes for enhanced bone tissue engineering. Trends Biotechnol 31:342–346

    Article  CAS  PubMed  Google Scholar 

  • Duan DH, Zhang Y (2011) A clinical investigation on disc displacement in sagittal fracture of the mandibular condyle and its association with TMJ ankylosis development. Int J Oral Maxillofac Surg 40:134–138

    Article  CAS  PubMed  Google Scholar 

  • Frith JC, Monkkonen J, Blackburn GM, Russell RG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • He D, Ellis E 3rd, Zhang Y (2008) Etiology of temporomandibular joint ankylosis secondary to condylar fractures: the role of concomitant mandibular fractures. J Oral Maxillofac Surg 66:77–84

    Article  PubMed  Google Scholar 

  • He D, Yang C, Chen M, Zhang X, Qiu Y, Yang X, Li L, Fang B (2011) Traumatic temporomandibular joint ankylosis: our classification and treatment experience. J Oral Maxillofac Surg 69:1600–1607

    Article  PubMed  Google Scholar 

  • He LH, Xiao E, Duan DH, Gan YH, Zhang Y (2015) Osteoclast deficiency contributes to temporomandibular joint ankylosed bone mass formation. J Dent Res 94:1392–1400

    Article  CAS  PubMed  Google Scholar 

  • Hoff P, Gaber T, Strehl C, Schmidt-Bleek K, Lang A, Huscher D, Burmester GR, Schmidmaier G, Perka C, Duda GN, Buttgereit F (2016) Immunological characterization of the early human fracture hematoma. Immunol Res 64:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Horwood NJ (2016) Macrophage polarization and bone formation: a review. Clin Rev Allergy Immunol 51:79–86

    Article  CAS  PubMed  Google Scholar 

  • Hosseini-Farahabadi S, Geetha-Loganathan P, Fu K, Nimmagadda S, Yang HJ, Richman JM (2013) Dual functions for WNT5A during cartilage development and in disease. Matrix Biol 32:252–264

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Wang B, Li J, Xie W, Mao Q, Li S, Dong F, Sun Y, Ke H-Z, Babij P (2015) Anti-DKK1 antibody promotes bone fracture healing through activation of β-catenin signaling. Bone 71:63–75

    Article  CAS  PubMed  Google Scholar 

  • Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, Perka C, Buttgereit F, Duda GN (2010) The early fracture hematoma and its potential role in fracture healing. Tissue Eng B Rev 16(4):427–434

    Article  Google Scholar 

  • Laskin DM (1978) Role of the meniscus in the etiology of post-traumatic temporomandibular joint ankylosis. Int J Oral Surg 7:340–345

    Article  CAS  PubMed  Google Scholar 

  • Lent P, Bersselaar LA, van den Hoek AE, van de Ende M, Dijkstra CD, Van Rooijen N, van de Putte LB, Berg W (1993) Reversible depletion of synovial lining cells after intraarticular treatment with liposome encapsulated dichloromethylene diphosphonate

  • Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D, Han CY, Yu L, Lee J, Lee E, Barrero M, Kurimoto P, Niu QT, Geng Z, Winters A, Horan T, Steavenson S, Jacobsen F, Chen Q, Haldankar R, Lavallee J, Tipton B, Daris M, Sheng J, Lu HS, Daris K, Deshpande R, Valente EG, Salimi-Moosavi H, Kostenuik PJ, Li J, Liu M, Li C, Lacey DL, Simonet WS, Ke HZ, Babij P, Stolina M, Ominsky MS, Richards WG (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26:2610–2621

    Article  CAS  PubMed  Google Scholar 

  • Loi F, Cordova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB (2016a) Inflammation, fracture and bone repair. Bone 86:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loi F, Córdova LA, Zhang R, Pajarinen J, Lin T, Goodman SB, Yao Z (2016b) The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res Ther 7:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mariani E, Pulsatelli L, Facchini A (2014) Signaling pathways in cartilage repair. Int J Mol Sci 15:8667–8698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto H, Kurita K, Ogi N, Ishimaru J-I, Goss A (2000a) Effect of limited jaw motion on ankylosis of the temporomandibular joint in sheep. Br J Oral Maxillofac Surg 38:148–153

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto H, Kurita K, Ogi N, J-i I, Goss AN (2000b) The effect of an intra-articular bone fragment in the genesis of temporomandibular joint ankylosis. Int J Oral Maxillofac Surg 29:290–295

    Article  CAS  PubMed  Google Scholar 

  • Mönkkönen H, Rogers MJ, Makkonen N, Niva S, Auriola S, Mönkkönen J (2001) The cellular uptake and metabolism of clodronate in RAW 264 macrophages. Pharm Res 18(11):1550–1555

  • Muntoni E, Canaparo R, Della Pepa C, Serpe L, Casale F, Barbera S, Romano P, Zara GP, Eandi M (2004) Determination of disodium clodronate in human plasma and urine using gas-chromatography-nitrogen-phosphorous detections: validation and application in pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 799(1):133–139

    Article  CAS  Google Scholar 

  • Nitzan DW, Bar-Ziv J, Shteyer A (1998) Surgical management of temporomandibular joint ankylosis type III by retaining the displaced condyle and disc. J Oral Maxillofac Surg 56:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Okada E, Nakata H, Yamamoto M, Kasugai S, Kuroda S (2018) Indirect osteoblast differentiation by liposomal clodronate. J Cell Mol Med 22:1127–1137

    CAS  PubMed  Google Scholar 

  • Patil AS, Sable RB, Kothari RM (2012) Role of insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J Cell Physiol 227:1796–1804

    Article  CAS  PubMed  Google Scholar 

  • Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G (2008) Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol 28:504–510

    Article  CAS  PubMed  Google Scholar 

  • Pettit AR, Chang MK, Hume DA, Raggatt LJ (2008) Osteal macrophages: a new twist on coupling during bone dynamics. Bone 43:976–982

    Article  PubMed  Google Scholar 

  • Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, Maugham ML, Gregory LS, Steck R, Pettit AR (2014) Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol 184:3192–3204

    Article  CAS  PubMed  Google Scholar 

  • Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossini M, Viapiana O, Ramonda R, Bianchi G, Olivieri I, Lapadula G, Adami S (2009) Intra-articular clodronate for the treatment of knee osteoarthritis: dose ranging study vs hyaluronic acid. Rheumatology (Oxford, England) 48:773–778

    Article  CAS  Google Scholar 

  • Sawhney CP (1986) Bony ankylosis of the temporomandibular joint: follow-up of 70 patients treated with arthroplasty and acrylic spacer interposition. Plast Reconstr Surg 77:29–40

    Article  CAS  PubMed  Google Scholar 

  • Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S (2018) Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 106:78–89

    Article  CAS  PubMed  Google Scholar 

  • Shantz JAS, Yu Y-Y, Andres W, Miclau T III, Marcucio R (2014) Modulation of macrophage activity during fracture repair has differential effects in young adult and elderly mice. J Orthop Trauma 28:S10

    Article  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinder BP, Pettit AR, McCauley LK (2015) Macrophages: their emerging roles in bone. J Bone Miner Res 30:2140–2149

    Article  PubMed  Google Scholar 

  • Thomas MV, Puleo DA (2011) Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res 90:1052–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tideman H, Doddridge M (1987) Temporomandibular joint ankylosis. Aust Dent J 32:171–177

    Article  CAS  PubMed  Google Scholar 

  • van Rooijen N, Bakker J, Sanders N (1997) Transient suppression of macrophage functions by liposome-encapsulated drugs. Trends Biotechnol 15:178–185

    Article  PubMed  Google Scholar 

  • van Rooijen N, Hendrikx E (2010) Liposomes for specific depletion of macrophages from organs and tissues. Methods in molecular biology (Clifton, NJ) 605:189-203

  • Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA (2015) Macrophages promote osteoblastic differentiation in vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res 30:1090–1102

    Article  CAS  PubMed  Google Scholar 

  • Waters RV, Gamradt SC, Asnis P, Vickery BH, Avnur Z, Hill E, Bostrom M (2000) Systemic corticosteroids inhibit bone healing in a rabbit ulnar osteotomy model. Acta Orthop Scand 71:316–321

    Article  CAS  PubMed  Google Scholar 

  • Wu AC, Raggatt LJ, Alexander KA, Pettit AR (2013) Unraveling macrophage contributions to bone repair. Bonekey Rep. https://doi.org/10.1038/bonekey.2013.107

  • Xiang GL, Long X, Deng MH, Han QC, Meng QG, Li B (2014) A retrospective study of temporomandibular joint ankylosis secondary to surgical treatment of mandibular condylar fractures. Br J Oral Maxillofac Surg 52:270–274

    Article  PubMed  Google Scholar 

  • Xiao E, Li J-M, Yan Y-B, An J-G, Duan D-H, Gan Y-H, Zhang Y (2013) Decreased osteogenesis in stromal cells from radiolucent zone of human TMJ ankylosis. J Dent Res 92:450–455

    Article  CAS  PubMed  Google Scholar 

  • Yan Yinbin (2011) Preliminary study on the mechanism of traumatic temporomandibular joint ankylosis

  • Yan Y, Zhang Y, Sun Z, Li J, Xiao E, An J (2011) The relationship between mouth opening and computerized tomographic features of posttraumatic bony ankylosis of the temporomandibular joint. Oral Surg Oral Med Oral Pathol.Oral Radiol Endod 111:354–361

    Article  PubMed  Google Scholar 

  • Yan Y-B, Liang S-X, Shen J, Zhang J-C, Zhang Y (2014a) Current concepts in the pathogenesis of traumatic temporomandibular joint ankylosis. Head Face Med 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y-B, Zhang Y, Gan Y-H, An J-G, Li J-M, Xiao E (2013) Surgical induction of TMJ bony ankylosis in growing sheep and the role of injury severity of the glenoid fossa on the development of bony ankylosis. J Craniomaxillofac Surg 41:476–486

    Article  PubMed  Google Scholar 

  • Yan YB, Duan DH, Zhang Y, Gan YH (2012) The development of traumatic temporomandibular joint bony ankylosis: a course similar to the hypertrophic nonunion? Med Hypotheses 78:273–276

    Article  CAS  PubMed  Google Scholar 

  • Yan YB, Li JM, Xiao E, An JG, Gan YH, Zhang Y (2014b) A pilot trial on the molecular pathophysiology of traumatic temporomandibular joint bony ankylosis in a sheep model. Part I: expression of Wnt signaling. J Craniomaxillofac Surg 42:e15–e22

    Article  PubMed  Google Scholar 

  • Yan YB, Li JM, Xiao E, An JG, Gan YH, Zhang Y (2014c) A pilot trial on the molecular pathophysiology of traumatic temporomandibular joint bony ankylosis in a sheep model. Part II: the differential gene expression among fibrous ankylosis, bony ankylosis and condylar fracture. J Craniomaxillofac Surg 42:e23–e28

    Article  PubMed  Google Scholar 

  • Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130:1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, He DM (2006) Clinical investigation of early post-traumatic temporomandibular joint ankylosis and the role of repositioning discs in treatment. Int J Oral Maxillofac Surg 35:1096–1101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would also like to thank Dr. Jie Lei for her assistance with the radiological analysis.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81670959 and No. 81801000). The funders had no role in the design of the projects, performance of the experiments, analysis of the results or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. contributed to model building, sample collection, data acquisition and manuscript drafting; E.X. contributed to model building, data analysis and interpretation and critical revision of the manuscript; LH.H. assisted with the histological analysis and critical revision of the manuscript; DH.D. and Y.H. contributed to the sample collection and critical revision of the manuscript; S.C. assisted with the CBCT imaging evaluation; and Y.Z. and YH.G. contributed to the conception and design of the study and critical revision of the manuscript. All authors gave their final approval and agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Yi Zhang or Yehua Gan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study and this study was approved by the Ethics Committee of Peking University (IRB00001 05211002).

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All animal studies were performed in compliance with the regulations and guidelines of the Peking University institutional animal care committee (LA 2018016) and conducted according to AAALAC and IACUC guidelines.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to a retrospective Open Access cancellation.

Electronic supplementary material

ESM 1

(DOCX 23537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Xiao, E., He, L. et al. Reducing macrophage numbers alleviates temporomandibular joint ankylosis. Cell Tissue Res 379, 521–536 (2020). https://doi.org/10.1007/s00441-019-03087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03087-7

Keywords

Navigation