We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

Nerve/glial antigen 2 is crucially involved in the revascularization of freely transplanted pancreatic islets

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pancreatic islets are highly vascularized endocrine units. Accordingly, their adequate revascularization is of major importance for successful islet transplantation. The proteoglycan, nerve/glial antigen 2 (NG2) expressed in pericytes is a crucial regulator of angiogenesis. Therefore, we herein analyze whether this surface protein contributes to the revascularization of grafted islets. Islets were isolated from NG2+/+ (wild-type) and NG2−/− mice and their cellular composition was analyzed by immunohistochemical detection of insulin, glucagon, somatostatin and CD31. Moreover, insulin secretion was assessed by enzyme-linked immunosorbent assay (ELISA). In addition, isolated islets were transplanted into dorsal skinfold chambers of wild-type mice and their revascularization was determined by intravital fluorescence microscopy and immunohistochemistry. NG2+/+ and NG2−/− islets did not differ in their cellular composition and insulin secretion. However, transplanted NG2−/− islets exhibited a significantly lower functional capillary density and a reduced number of CD31-positive microvessels. These findings demonstrate that the loss of NG2 impairs the revascularization of transplanted islets, underlining the importance of this pericytic proteoglycan for islet engraftment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almaca J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A (2018) The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab 27:630–644 e634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ampofo E, Rudzitis-Auth J, Dahmke IN, Roessler OG, Thiel G, Montenarh M, Menger MD, Laschke MW (2015) Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-alpha-induced leukocyte-endothelial cell interaction. Biochim Biophys Acta 1852:2123–2136

    CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    CAS  PubMed  Google Scholar 

  • Bai X, Saab AS, Huang W, Hoberg IK, Kirchhoff F, Scheller A (2013) Genetic background affects human glial fibrillary acidic protein promoter activity. PLoS One 8:e66873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barritt DS, Pearn MT, Zisch AH, Lee SS, Javier RT, Pasquale EB, Stallcup WB (2000) The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J Cell Biochem 79:213–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beger C, Cirulli V, Vajkoczy P, Halban PA, Menger MD (1998) Vascularization of purified pancreatic islet-like cell aggregates (pseudoislets) after syngeneic transplantation. Diabetes 47:559–565

    CAS  PubMed  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncology 7:452–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brissova M, Fowler M, Wiebe P, Shostak A, Shiota M, Radhika A, Lin PC, Gannon M, Powers AC (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 53:1318–1325

    CAS  PubMed  Google Scholar 

  • Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ (2014) Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes 7:211–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burg MA, Tillet E, Timpl R, Stallcup WB (1996) Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem 271:26110–26116

    CAS  PubMed  Google Scholar 

  • Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME (2008) The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 49:2163–2171

    PubMed  Google Scholar 

  • Franco M, Roswall P, Cortez E, Hanahan D, Pietras K (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118:2906–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gargiulo P, Giusti C, Pietrobono D, La Torre D, Diacono D, Tamburrano G (2004) Diabetes mellitus and retinopathy. Dig Liver Dis 36(Suppl 1):S101–S105

    PubMed  Google Scholar 

  • Goss JA, Schock AP, Brunicardi FC, Goodpastor SE, Garber AJ, Soltes G, Barth M, Froud T, Alejandro R, Ricordi C (2002) Achievement of insulin independence in three consecutive type-1 diabetic patients via pancreatic islet transplantation using islets isolated at a remote islet isolation center. Transplantation 74:1761–1766

    CAS  PubMed  Google Scholar 

  • Hellström M, Kalen M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  Google Scholar 

  • Henriksnas J, Lau J, Zang G, Berggren PO, Kohler M, Carlsson PO (2012) Markedly decreased blood perfusion of pancreatic islets transplanted intraportally into the liver: disruption of islet integrity necessary for islet revascularization. Diabetes 61:665–673

    PubMed  PubMed Central  Google Scholar 

  • Hogan MF, Hull RL (2017) The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60:952–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhao N, Bai X, Karram K, Trotter J, Goebbels S, Scheller A, Kirchhoff F (2014) Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia 62:896–913

    PubMed  Google Scholar 

  • Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921

    CAS  PubMed  Google Scholar 

  • Juang JH, Kuo CH, Peng SJ, Tang SC (2015) 3-D imaging reveals participation of donor islet Schwann cells and pericytes in islet transplantation and graft neurovascular regeneration. EBioMedicine 2:109–119

    PubMed  PubMed Central  Google Scholar 

  • Kelly C, Parke HG, McCluskey JT, Flatt PR, McClenaghan NH (2010) The role of glucagon- and somatostatin-secreting cells in the regulation of insulin release and beta-cell function in heterotypic pseudoislets. Diabetes Metab Res Rev 26:525–533

    CAS  PubMed  Google Scholar 

  • Laschke MW, Vollmar B, Menger MD (2011) The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue. Eur Cell Mater 22:147–164

    CAS  PubMed  Google Scholar 

  • Lau J, Carlsson PO (2009) Low revascularization of human islets when experimentally transplanted into the liver. Transplantation 87:322–325

    PubMed  Google Scholar 

  • Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140

    CAS  PubMed  Google Scholar 

  • Makagiansar IT, Williams S, Mustelin T, Stallcup WB (2007) Differential phosphorylation of NG2 proteoglycan by ERK and PKCalpha helps balance cell proliferation and migration. J Cell Biol 178:155–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malinin NL, Pluskota E, Byzova TV (2012) Integrin signaling in vascular function. Curr Opin Hematol 19:206–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menger MD, Vajkoczy P, Leiderer R, Jäger S, Messmer K (1992) Influence of experimental hyperglycemia on microvascular blood perfusion of pancreatic islet isografts. J Clin Invest 90:1361–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menger MD, Yamauchi J, Vollmar B (2001) Revascularization and microcirculation of freely grafted islets of Langerhans. World J Surg 25:509–515

    CAS  PubMed  Google Scholar 

  • Murfee WL, Rehorn MR, Peirce SM, Skalak TC (2006) Perivascular cells along venules upregulate NG2 expression during microvascular remodeling. Microcirculation 13:261–273

    CAS  PubMed  Google Scholar 

  • Nishiyama A (2007) Polydendrocytes: NG2 cells with many roles in development and repair of the CNS. Neuroscientist 13:62–76

    CAS  PubMed  Google Scholar 

  • Olsson R, Carlsson PO (2006) The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int J Biochem Cell Biol 38:710–714

    CAS  PubMed  Google Scholar 

  • Ozerdem U, Stallcup WB (2004) Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7:269–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227

    CAS  PubMed  Google Scholar 

  • Proebstl D, Voisin MB, Woodfin A, Whiteford J, D'Acquisto F, Jones GE, Rowe D, Nourshargh S (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209:1219–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268

    CAS  PubMed  Google Scholar 

  • Sasson A, Rachi E, Sakhneny L, Baer D, Lisnyansky M, Epshtein A, Landsman L (2016) Islet pericytes are required for beta-cell maturity. Diabetes 65:3008–3014

    CAS  PubMed  Google Scholar 

  • Schlingemann RO, Rietveld FJ, de Waal RM, Ferrone S, Ruiter DJ (1990) Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol 136:1393–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    CAS  PubMed  Google Scholar 

  • Tanjore H, Zeisberg EM, Gerami-Naini B, Kalluri R (2008) Beta1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Dev Dyn 237:75–82

    CAS  PubMed  Google Scholar 

  • Tillet E, Gential B, Garrone R, Stallcup WB (2002) NG2 proteoglycan mediates beta1 integrin-independent cell adhesion and spreading on collagen VI. J Cell Biochem 86:726–736

    CAS  PubMed  Google Scholar 

  • Vajkoczy P, Menger MD, Simpson E, Messmer K (1995a) Angiogenesis and vascularization of murine pancreatic islet isografts. Transplantation 60:123–127

    CAS  PubMed  Google Scholar 

  • Vajkoczy P, Olofsson AM, Lehr HA, Leiderer R, Hammersen F, Arfors KE, Menger MD (1995b) Histogenesis and ultrastructure of pancreatic islet graft microvasculature. Evidence for graft revascularization by endothelial cells of host origin. Am J Pathol 146:1397–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent AM, Russell JW, Low P, Feldman EL (2004) Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25:612–628

    CAS  PubMed  Google Scholar 

  • Wietecha MS, Cerny WL, DiPietro LA (2013) Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. Curr Top Microbiol Immunol 367:3–32

    PubMed  Google Scholar 

  • Yadavilli S, Hwang EI, Packer RJ, Nazarian J (2016) The role of NG2 proteoglycan in glioma. Transl Oncol 9:57–63

    PubMed  PubMed Central  Google Scholar 

  • Yamamoto H, Ehling M, Kato K, Kanai K, van Lessen M, Frye M, Zeuschner D, Nakayama M, Vestweber D, Adams RH (2015) Integrin beta1 controls VE-cadherin localization and blood vessel stability. Nat Commun 6:6429

    CAS  PubMed  Google Scholar 

  • Ye F, Kim C, Ginsberg MH (2011) Molecular mechanism of inside-out integrin regulation. J Thromb Haemost 9(Suppl 1):20–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yotsumoto F, You WK, Cejudo-Martin P, Kucharova K, Sakimura K, Stallcup WB (2015) NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology 4:e1001204

    PubMed  PubMed Central  Google Scholar 

  • You WK, Yotsumoto F, Sakimura K, Adams RH, Stallcup WB (2014) NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function. Angiogenesis 17:61–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the excellent technical assistance of Caroline Bickelmann. We gratefully acknowledge Hongkui Zeng (Allen Institute for Brain Science, Seattle, Washington, USA) for providing reporter mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Ampofo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

All experiments were approved by the local governmental animal protection committee (Landesamt für Verbraucherschutz, Abteilung C Lebensmittel- und Veterinärwesen, Saarbrücken, Germany; permit number 45/2018). They were performed according to the NIH Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, National Research Council, Washington DC, USA) and the European legislation on protection of animals (Guide line 2010/63/EU).

For the generation of human citrate plasma, venous blood was drawn from four healthy human volunteers after obtaining their written informed consent and with the approval of the local ethics review board.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalbach, L., Schmitt, B.M., Becker, V. et al. Nerve/glial antigen 2 is crucially involved in the revascularization of freely transplanted pancreatic islets. Cell Tissue Res 378, 195–205 (2019). https://doi.org/10.1007/s00441-019-03048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03048-0

Keywords

Navigation