Skip to main content

Advertisement

Log in

Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

This paper provides quantitative data on the distributions of enteroendocrine cells (EEC), defined by the hormones they contain, patterns of colocalisation between hormones and EEC relations to nerve fibres in the rat gastric mucosa. The rat stomach has three mucosal types: non-glandular stratified squamous epithelium of the fundus and esophageal groove, a region of oxyntic glands in the corpus, and pyloric glands of the antrum and pylorus. Ghrelin and histamine were both contained in closed cells, not contacting the lumen, and were most numerous in the corpus. Gastrin cells were confined to the antrum, and 5-hydroxytryptamine (5-HT) and somatostatin cells were more frequent in the antrum than the corpus. Most somatostatin cells had basal processes that in the antrum commonly contacted gastrin cells. Peptide YY (PYY) cells were rare and mainly in the antrum. The only numerous colocalisations were 5-HT and histamine, PYY and gastrin and gastrin and histamine in the antrum, but each of these populations was small. Peptide-containing nerve fibres were found in the mucosa. One of the most common types was vasoactive intestinal peptide (VIP) fibres. High-resolution analysis showed that ghrelin cells were closely and selectively approached by VIP fibres. In contrast, gastrin cells were not selectively innervated by VIP or CGRP fibres. The study indicates that there are distinct populations of gastric EEC and selective innervation of ghrelin cells. It also shows that, in contrast to EEC of the small intestine, the majority of EEC within the stomach contained only a single hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Accili EA, Dhatt N, Buchan AMJ (1995) Neural somatostatin, vasoactive intestinal polypeptide and substance P in canine and human jejunum. Neurosci Lett 185:37–40

    Article  CAS  PubMed  Google Scholar 

  • Andrews PLR, Davis CJ, Bingham S, Davidson HI, Hawthorn J, Maskell L (1990) The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity. Can J Physiol Pharmacol 68:325–345

    Article  CAS  PubMed  Google Scholar 

  • Andrews PLR, Naylor RJ, Joss RA (1998) Neuropharmacology of emesis and its relevance to anti-emetic therapy. Support Care Cancer 6:197–203

    Article  CAS  PubMed  Google Scholar 

  • Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya M, Niijima A, Fujino MA, Kasuga M (2001) Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120:337–345

    Article  CAS  PubMed  Google Scholar 

  • Avau B, Carbone F, Tack J, Depoortere I (2013) Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol Motil 25:720–732

    Article  CAS  PubMed  Google Scholar 

  • Berthoud H-R (1996) Morphological analysis of vagal input to gastrin releasing peptide and vasoactive intestinal peptide containing neurons in the rat glandular stomach. J Comp Neurol 370:61–70

    Article  CAS  PubMed  Google Scholar 

  • Berthoud H-R, Powley TL (1992) Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 319:261–276

    Article  CAS  PubMed  Google Scholar 

  • Blundell JE (1986) Serotonin manipulations and the structure of feeding behaviour. Appetite 7:39–56

    Article  CAS  PubMed  Google Scholar 

  • Buchan AMJ, Sikora LKJ, Levy JG, McIntosh CHS, Dyck I, Brown JC (1985) An immunocytochemical investigation with monoclonal antibodies to somatostatin. Histochemistry 83:175–180

    Article  CAS  PubMed  Google Scholar 

  • Canfield SP, Spencer JE (1983) The inhibitory effects of 5-hydroxytryptamine on gastric acid secretion by the rat isolated stomach. Br J Pharmacol 78:123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho H-J, Callaghan B, Bron R, Bravo DM, Furness JB (2014) Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell Tissue Res 356:77–82

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Kosari S, Hunne B, Callaghan B, Rivera LR, Bravo DM, Furness JB (2015) Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell Tissue Res 359:693–698

    Article  CAS  PubMed  Google Scholar 

  • Choi E, Roland JT, Barlow BJ, O’Neal R, Rich AE, Nam KT, Shi C, Goldenring JR (2014) Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut 63:1711–1720

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang C-N, Tanner M, Lloyd KCK, Wong H, Soll AH (1993) Endogenous somatostatin inhibits histamine release from canine gastric mucosal cells in primary culture. Am J Physiol Gastrointest Liver Physiol 28:G521–G525

    Article  Google Scholar 

  • Clemmensen C, MT D, Woods SC, Berthoud H-R, Seeley RJ, Tschöp MH (2017) Gut-brain cross-talk in metabolic control. Cell 168:758–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper SJ, Dourish CT (1990) Multiple cholecystokinin (CCK) receptors and CCK-monoamine interactions are instrumental in the control of feeding. Physiol Behav 48:849–857

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Furness JB (1984) Somatostatin is present in a subpopulation of noradrenergic nerve fibres supplying the intestine. Neuroscience 13:911–919

    Article  CAS  PubMed  Google Scholar 

  • Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261

    Article  CAS  PubMed  Google Scholar 

  • Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M (2002) The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123:1120–1128

    Article  CAS  PubMed  Google Scholar 

  • Dornonville De La Cour C, Björkqvist M, Sandvik AK, Bakke I, Zhao C-M, Chen D, Håkanson R (2001) A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control. Regul Pept 99:141–150

    Article  CAS  PubMed  Google Scholar 

  • Dornonville de la Cour C, Lindström E, Norlén P, Håkanson R (2004) Ghrelin stimulates gastric emptying but is without effect on acid secretion and gastric endocrine cells. Regul Pept 120:23–32

    Article  CAS  PubMed  Google Scholar 

  • Egerod KL, Engelstoft MS, Grunddal KV et al (2012) A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 153:5782–5795

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, Ekelund M, Graffner H, Håkanson R, Sundler F (1985) Peptide-containing nerve fibres in the stomach wall of rat and mouse. Gastroenterology 89:73–85

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, M Q, Sundler F (2000) Innervation of the gastric mucosa. Microsc Res Tech 48:241–257

    Article  CAS  PubMed  Google Scholar 

  • Engelstoft MS, Park W-M, Sakata I et al (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2:376–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhry J, Stebbing MJ, Hunne B, Bayguinov Y, Ward SM, Sasse KC, Callaghan B, McQuade RM, Furness JB (2019) Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 376:37–49

  • Fothergill LJ, Callaghan B, Hunne B, Bravo DM, Furness JB (2017) Costorage of enteroendocrine hormones evaluated at the cell and subcellular levels in male mice. Endocrinology 158:2113–2123

    Article  PubMed  Google Scholar 

  • Frick C, Rettenberger AT, Lunz ML, Breer H (2016) Complex morphology of gastrin-releasing G-cells in the antral region of the mouse stomach. Cell Tissue Res 366:301–310

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M, Walsh JH (1981) Evidence for and significance of the projection of VIP neurons from the myenteric plexus to the taenia coli in the guinea-pig. Gastroenterology 80:1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Padbury RTA, Baimbridge KG, Skinner JM, Lawson DEM (1989) Calbindin immunoreactivity is a characteristic of enterochromaffin- like cells ECL cells of the human stomach. Histochemistry 92:449–451

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Koopmans HS, Robbins HL, Clerc N, Tobin JM, Morris MJ (2001) Effects of vagal and splanchnic section on food intake, weight, serum leptin and hypothalamic neuropeptide Y in rat. Auton Neurosci 92:28–36

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Rivera LR, Cho H-J, Bravo DM, Callaghan B (2013) The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10:729–740

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Yoshimura M, Aizawa S, Kurotani R, Zigman JM, Sakai T, Sakata I (2013) G-protein coupled receptor 120 (GPR120) signaling regulates ghrelin secretion in vivo and in vitro. Am J Physiol Endocrinol Metab 306:E28–E35

  • Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299

    Article  CAS  PubMed  Google Scholar 

  • Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CAM, Parker HE, Morley TCE, Yeo GSH, Reimann F, Gribble FM (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153:3054–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauso Ø, Gustafsson BI, Waldum HL (2007) Long slender cytoplasmic extensions: a common feature of neuroendocrine cells? J Neuroendocrinol 19:739–742

    Article  CAS  PubMed  Google Scholar 

  • Hunyady B, Zólyomi A, Hoffman BJ, Mezey E (1998) Gastrin-producing endocrine cells: a novel source of histamine in the rat stomach. Endocrinology 139:4404–4415

    Article  CAS  PubMed  Google Scholar 

  • Husted AS, Trauelsen M, Rudenko O, Hjorth SA, Schwartz TW (2017) GPCR-mediated signaling of metabolites. Cell Metab 25:777–796

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Yokozaki H, Tokumo K, Nakajo S, Tahara E (1986) Serotonin-containing EC cells in normal human gastric mucosa and in gastritis. Virchows Archiv A 409:313–323

    Article  CAS  Google Scholar 

  • Kasacka I, Łebkowski W, Janiuk I, Łapińska J, Lewandowska A (2012) Immunohistochemical identification and localisation of gastrin and somatostatin in endocrine cells of human pyloric gastric mucosa. Folia Morphol (Warsz) 71:39–44

    CAS  Google Scholar 

  • Kestell GR, Anderson RL, Clarke JN, Haberberger RV, Gibbins IL (2015) Primary afferent neurons containing calcitonin gene-related peptide but not substance P in forepaw skin, dorsal root ganglia, and spinal cord of mice. J Comp Neurol 523:2555–2569

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Kangawa K (2010) Ghrelin: more than endogenous growth hormone secretagogue. Ann N Y Acad Sci 1200:140–148

    Article  CAS  PubMed  Google Scholar 

  • Kovacs TO, Lloyd KC, Lawson DC (1997) Inhibition of sham feeding-stimulated acid secretion in dogs by immunoneutralization of gastrin. Am J Physiol Gastrointest Liver Physiol 273:G399–G403

    Article  CAS  Google Scholar 

  • Larsson LI, Goltermann N, De Magistris L, Rehfeld JF, Schwarz TW (1979) Somatostatin cell processess as pathways for paracrine secretion. Science 205:1393–1395

    Article  CAS  PubMed  Google Scholar 

  • le Roux CW, Neary NM, Halsey TJ, Small CJ, Martinez-Isla AM, Ghatei MA, Theodorou NA, Bloom SR (2005) Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab 90:4521–4524

    Article  CAS  PubMed  Google Scholar 

  • LePard KJ, Chi J, Mohammed JR, Gidener S, Stephens RL Jr (1996) Gastric antisecretory effect of serotonin: quantitation of release and site of action. Am J Physiol Endocrinol Metab 271:E669–E677

    Article  CAS  Google Scholar 

  • Levin F, Edholm T, Schmidt PT, Grybäck P, Jacobsson H, Degerblad M, Höybye C, Holst JJ, Rehfeld JF, Hellström PM, Näslund E (2006) Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J Clin Endocrinol Metab 91:3296–3302

    Article  CAS  PubMed  Google Scholar 

  • Lu K-H, Cao J, Thomas Oleson S, Powley TL, Liu Z (2017) Contrast-enhanced magnetic resonance imaging of gastric emptying and motility in rats. IEEE Trans Biomed Eng 64:2546–2554

    Article  PubMed  Google Scholar 

  • Miller AS, Furness JB, Costa M (1989) The relationship between gastrin cells and bombesin-like immunoreactive nerve fibres in the gastric antral mucosa of guinea-pig, rat, dog and man. Cell Tissue Res 257:171–178

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Atsuchi K, Asakawa A, Matsuda N, Fujimura M, Inui A, Kato I, Fujimiya M (2009) Localization of acyl ghrelin- and des-acyl ghrelin-immunoreactive cells in the rat stomach and their responses to intragastric pH. Am J Physiol Gastrointest Liver Physiol 297:G974–G980

    Article  CAS  PubMed  Google Scholar 

  • Moody TW, Pert CB (1979) Bombesin-like peptides in rat brains: quantitation and biochemical characterization. Biochem Biophys Res Commun 90:7–14

    Article  CAS  PubMed  Google Scholar 

  • Mumphrey MB, Patterson LM, Zheng H, Berthoud H-R (2013) Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil 25:e70–e79

    Article  CAS  PubMed  Google Scholar 

  • Phillips RJ, Powley TL (1998) Gastric volume detection after selective vagotomies in rats. Am J Physiol Regul Integr Comp Physiol 271:R766–R769

    Article  Google Scholar 

  • Powley TL, Spaulding RA, Haglof SA (2011) Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol 519:644–660

    Article  PubMed  PubMed Central  Google Scholar 

  • Powley TL, Hudson CN, McAdams JL, Baronowsky EA, Martin FN, Mason JK, Phillips RJ (2014) Organization of vagal afferents in pylorus: mechanoreceptors arrayed for high sensitivity and fine spatial resolution? Auton Neurosci 183:36–48

    Article  PubMed  Google Scholar 

  • Pustovit RV, Callaghan B, Ringuet MT, Kerr NF, Hunne B, Smyth IM, Pietra C, Furness JB (2017) Evidence that central pathways that mediate defecation utilize ghrelin receptors but do not require endogenous ghrelin. Physiol Rep 5:e13385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynaud Y, Fakhry J, Fothergill L, Callaghan B, Ringuet MT, Hunne B, Bravo DM, Furness JB (2016) The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell Tissue Res 364:489–497

    Article  CAS  PubMed  Google Scholar 

  • Rindi G, Necchi V, Savio A, Torsello A, Zoli M, Locatelli V, Raimondo F, Cocchi D, Solcia E (2002) Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues. Histochem Cell Biol 117:511–519

    Article  CAS  PubMed  Google Scholar 

  • Sanger GJ, Furness JB (2016) Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat Rev Gastroenterol Hepatol 19:38–48

    Article  CAS  Google Scholar 

  • Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Gastroenterology 134:1842–1860

    Article  CAS  PubMed  Google Scholar 

  • Schubert ML, Bitar KN, Makhlouf GM (1982) Regulation of gastrin and somatostatin secretion by cholinergic and noncholinergic intramural neurons. Am J Physiol Gastrointest Liver Physiol 243:G442–G447

    Article  CAS  Google Scholar 

  • Schubert ML, Edwards NF, Makhlouf GM (1988) Regulation of gastric somatostatin secretion in the mouse by luminal acidity: a local feedback mechanism. Gastroenterology 94:317–322

    Article  CAS  PubMed  Google Scholar 

  • Smolka AJ, Larsen KA, Hammond CE (2000) Location of a cytoplasmic epitope for monoclonal antibody HK 12.18 on H,K-ATPase α subunit. Biochem Biophys Res Commun 273:942–947

    Article  CAS  PubMed  Google Scholar 

  • Solcia E, Rindi G, Buffa R, Fiocca R, Capella C (2000) Gastric endocrine cells: types, function and growth. Regul Pept 93:31–35

    Article  CAS  PubMed  Google Scholar 

  • Steensels S, Vancleef L, Depoortere I (2016) The sweetener-sensing mechanisms of the ghrelin cell. Nutrients 8:795

    Article  CAS  PubMed Central  Google Scholar 

  • Stengel A, Hofmann T, Goebel-Stengel M, Lembke V, Ahnis A, Elbelt U, Lambrecht NWG, Ordemann J, Klapp BF, Kobelt P (2013) Ghrelin and NUCB2/nesfatin-1 are expressed in the same gastric cell and differentially correlated with body mass index in obese subjects. Histochem Cell Biol 139:909–918

    Article  CAS  PubMed  Google Scholar 

  • Sykaras AG, Demenis C, Cheng L, Pisitkun T, Mclaughlin JT, Fenton RA, Smith CP (2014) Duodenal CCK cells from male mice express multiple hormones including ghrelin. Endocrinology 155:3339–3351

    Article  CAS  PubMed  Google Scholar 

  • Tanaka-Shintani M, Watanabe M (2005) Distribution of ghrelin-immunoreactive cells in human gastric mucosa: comparison with that of parietal cells. J Gastroenterol 40:345–349

    Article  CAS  PubMed  Google Scholar 

  • Veedfald S, Plamboeck A, Hartmann B, Vilsbøll T, Knop FK, Deacon CF, Svendsen LB, Holst JJ (2018) Ghrelin secretion in humans - a role for the vagus nerve? Neurogastroenterol Motil 30:e13295

    Article  CAS  PubMed  Google Scholar 

  • Vuyyuru L, Harrington L, Arimura A, Schubert ML (1997) Reciprocal inhibitory paracrine pathways link histamine and somatostatin secretion in the fundus of the stomach. Am J Physiol Gastrointest Liver Physiol 273:G106–G111

    Article  CAS  Google Scholar 

  • Walker AK, Park W-M, Chuang J-C, Perello M, Sakata I, Osborne-Lawrence S, Zigman JM (2013) Characterization of gastric and neuronal histaminergic populations using a transgenic mouse model. PLoS One 8:e60276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weihe E, Schütz B, Hartschuh W, Anlauf M, Schäfer MK, Eiden LE (2005) Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. J Comp Neurol 492:370–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DL, Cummings DE, Grill HJ, Kaplan JM (2003) Meal-related ghrelin suppression requires postgastric feedback. Endocrinology 144:2765–2767

    Article  CAS  PubMed  Google Scholar 

  • Wo JM, Nowak TV, Waseem S, Ward MP (2016) Gastric electrical stimulation for gastroparesis and chronic unexplained nausea and vomiting. Curr Treat Options Gastroenterol 14:386–400

    Article  PubMed  Google Scholar 

  • Worthington JJ, Reimann F, Gribble FM (2018) Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 11:3–20

    Article  CAS  PubMed  Google Scholar 

  • Yakabi K, Ro S, Onouhi T, Tanaka T, Ohno S, Miura S, Johno Y, Takayama K (2006) Histamine mediates the stimulatory action of ghrelin on acid secretion in rat stomach. Dig Dis Sci 51:1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Yu P-L, Fujimura M, Hayashi N, Nakamura T, Fujimiya M (2001) Mechanisms in regulating the release of serotonin from the perfused rat stomach. Am J Physiol Gastrointest Liver Physiol 280:G1099–G1105

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Berthoud H-R (2000) Functional vagal input to gastric myenteric plexus as assessed by vagal stimulation-induced Fos expression. Am J Physiol Gastrointest Liver Physiol 279:G73–G81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Josiane Fakhry for helpful comments on the manuscript.

Funding

This work was supported by NIH (SPARC) grant ID # OT2OD023847 (PI Terry Powley) to JBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Furness.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

None required.

Ethical approval

Procedures were approved by the University of Melbourne Animal Ethics Committee (ethics approval number 1614002). All applicable National and Institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunne, B., Stebbing, M.J., McQuade, R.M. et al. Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell Tissue Res 378, 33–48 (2019). https://doi.org/10.1007/s00441-019-03029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03029-3

Keywords

Navigation