Skip to main content

Advertisement

Log in

Effect of nociceptin on insulin release in normal and diabetic rat pancreas

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Nociceptin (NC), also known as Orphanin FQ, is a brain peptide involved in the regulation of pain, but its role in the endocrine pancreas is poorly understood. The present study examines the pattern of distribution of NC and its effect on insulin and glucagon secretion after the onset of diabetes mellitus (DM). Male Wistar rats weighing 150–200 g were made diabetic with streptozotocin (60 mg/kg body weight, intraperitoneally). Four weeks after the induction of DM, pancreatic tissues were retrieved and processed for immunofluorescence, immunoelectron microscopy, and insulin and glucagon secretion. Isolated islets from non-diabetic and diabetic rats were used to determine the effect of NC on insulin release. NC was discerned in islet cells of non-diabetic control and diabetic rat pancreata. NC co-localized only with insulin in pancreatic beta cells. NC did not co-localize with either glucagon or somatostatin or pancreatic polypeptide. The number of NC-positive cells was markedly (p < 0.001) reduced after the onset of DM. Electron microscopy study showed that NC is located with insulin in the same secretory granules of the beta cells of both non-diabetic and diabetic rat pancreas. NC inhibits insulin release markedly (p < 0.05) from pancreatic tissue fragments of non-diabetic and diabetic rats. In contrast, NC at 10−12 M stimulates insulin release in isolated islets of DM rats. In conclusion, NC co-localizes with insulin only in the islet of Langerhans. The co-localization of NC with insulin suggests a role for NC in the regulation of pancreatic beta cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulla FA, Smith PA (1997) Nociceptin inhibits T-type Ca2+ channel current in rat sensory neurons by a G-protein-independent mechanism. J Neurosci 17:8721–8728

    Article  CAS  Google Scholar 

  • Adeghate E, Ponery AS (2001) Large reduction in the number of galanin-immunoreactive cells in pancreatic islets of diabetic rats. J Neuroendocrinol 13:706–710

    Article  CAS  Google Scholar 

  • Adeghate E, Ponery AS (2002a) GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1–6

    Article  CAS  Google Scholar 

  • Adeghate E, Ponery AS (2002b) Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats. J Neuroendocrinol 14:555–560

    Article  CAS  Google Scholar 

  • Adeghate E, Ponery A (2004) Diabetes mellitus influences the degree of colocalization of calcitonin gene-related peptide with insulin and somatostatin in the rat pancreas. Pancreas 29:311–319

    Article  CAS  Google Scholar 

  • Adeghate E, Tekes K (2016) Distribution of nociceptin-immunoreactive nerves in the dorsal root ganglion of GK rats. FASEB J 30:lb35–lb35

    Google Scholar 

  • Adeghate E, Schattner P, Péter A, Dunn E, Donáth T (2001) Diabetes mellitus and its complications in a Hungarian population. Arch Physiol Biochem 109:281–291

    Article  CAS  Google Scholar 

  • Adeghate E, Schattner P, Dunn E (2006) An update on the etiology and epidemiology of diabetes mellitus. Ann N Y Acad Sci 1084:1–29

    Article  Google Scholar 

  • Adeghate E, Hameed RS, Ponery AS, Tariq S, Sheen RS, Shaffiullah M, Donáth T (2010) Streptozotocin causes pancreatic beta cell failure via early and sustained biochemical and cellular alterations. Exp Clin Endocrinol Diabetes 118:699–707

    Article  CAS  Google Scholar 

  • Al-Shamsi M, Amin A, Adeghate E (2006) Vitamin E decreases the hyperglucagonemia of diabetic rats. Ann N Y Acad Sci 1084:432–441

    Article  CAS  Google Scholar 

  • American Diabetes Association (2015) Classification and diagnosis of diabetes. Diabetes Care 38(Supplement 1):S8–S16

    Article  Google Scholar 

  • American Diabetes Association (2018) Diabetes care in the hospital: standards of medical care in diabetes—2018. Diabetes Care 41(Supplement 1): S144-S151

  • Broccardo M, Linari G, Guerrini R, Agostini S, Petrella C, Improta G (2005) The effects of [Arg14, Lys15] nociceptin/orphanin FQ, a highly potent agonist of the NOP receptor, on in vitro and in vivo gastrointestinal functions. Peptides 26:1590–1597

    Article  CAS  Google Scholar 

  • Calo G, Guerrini R, Rizzi A, Salvadori S, Regoli D (2000) Pharmacology of nociceptin and its receptor: a novel therapeutic target. Brit J Pharmacol 129:1261–1283

    Article  CAS  Google Scholar 

  • Carter JD, Dula SB, Corbin KL, Wu R, Craig S, Nunemaker CS (2009) A practical guide to rodent islet isolation and assessment. Biol Proced Online 11:3–31

    Article  CAS  Google Scholar 

  • Courteix C, Coudore-Civiale MA, Privat AM, Pelissier T, Eschalier A, Fialip J (2004) Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain 110:236–245

    Article  CAS  Google Scholar 

  • Csobay-Novák C, Sótonyi P, Krepuska M, Zima E, Szilágyi N, Tóth S, Szeberin Z, Acsády G, Merkely B, Tekes K (2012) Decreased plasma nociceptin/orphanin FQ levels after acute coronary syndromes. Acta Physiol Hung 99:99–110

    Article  Google Scholar 

  • Drucker DJ (1998) Glucagon-like peptides. Diabetes 47:159–169

    Article  CAS  Google Scholar 

  • Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368(9548):1696–1705

    Article  CAS  Google Scholar 

  • D'Souza A, Howarth FC, Yanni J, Dobrzynski H, Boyett MR, Adeghate E, Bidasee KR, Singh J (2014) Chronic effects of mild hyperglycaemia on left ventricle transcriptional profile and structural remodelling in the spontaneously type 2 diabetic Goto-Kakizaki rat. Heart Fail Rev 19:65–74

    Article  CAS  Google Scholar 

  • Entrez Gene: OPRL1 opiate receptor-like 1 (https://en.wikipedia.org/wiki/Nociceptin_receptor#cite_note-entrez-) Accessed on: 29 November 2017

  • Eppens MC, Craig ME, Cusumano J, Hing S, Chan AK, Howard NJ, Silink M, Donaghue KC (2006) Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 29:1300–1306

    Article  Google Scholar 

  • Escurat M, Djabali K, Huc C, Landon F, Bécourt C, Boitard C, Gros F, Portier MM (1991) Origin of the beta cells of the islets of Langerhans is further questioned by the expression of neuronal intermediate filament proteins, peripherin and NF-L, in the rat insulinoma RIN5F cell line. Dev Neurosci 13:424–432

    Article  CAS  Google Scholar 

  • Giuliani S, Maggi CA (1997) Prejunctional modulation by nociceptin of nerve-mediated inotropic responses in Guinea-pig left atrium. Eur J Pharmacol 332:231–236

    Article  CAS  Google Scholar 

  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149

    Article  CAS  Google Scholar 

  • Hadjimarkou MM, Singh A, Kandov Y, Israel Y, Pan YX, Rossi GC, Pasternak GW, Bodnar RJ (2004) Opioid receptor involvement in food deprivation-induced feeding: evaluation of selective antagonist and antisense oligodeoxynucleotide probe effects in mice and rats. J Pharmacol Exp Ther 311:1188–1202

    Article  CAS  Google Scholar 

  • Halford WP, Gebhardt BM, Carr DJ (1995) Functional role and sequence analysis of a lymphocyte orphan opioid receptor. J Neuroimmunol 59:91–101

    Article  CAS  Google Scholar 

  • Henderson G, McKnight AT (1997) The orphan opioid receptor and its endogenous ligand-nociceptin/orphanin FQ. Trends Pharmacol Sci 18:293–300

    Article  CAS  Google Scholar 

  • Himukashi S, Miyazaki Y, Takeshima H, Koyanagi S, Mukaida K, Shichino T, Uga H, Fukuda K (2005) Nociceptin system does not affect MAC of volatile anaesthetics. Acta Anaesthesiol Scand 49:771–773

    Article  CAS  Google Scholar 

  • Howarth FC, Adeghate E (2013) Epidemiology of diabetes mellitus—a global and regional perspective. Hamdan Med J 6:51–58

    Article  Google Scholar 

  • International Diabetes Federation (2016). Diabetes atlas. 7th edition, IDF, 166 Chaussee de La Hulpe, B-1170, Brussels, Belgium

  • Jenck F, Moreau JL, Martin JR, Kilpatrick GJ, Reinscheid RK, Monsma FJ Jr, Nothacker HP, Civelli O (1997) Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci U S A 94:14854–14858

    Article  CAS  Google Scholar 

  • Kamei J, Ohsawa M, Kashiwazaki T, Nagase H (1999) Antinociceptive effects of the ORL1 receptor agonist nociceptin/orphanin FQ in diabetic mice. Eur J Pharmacol 370:109–116

    Article  CAS  Google Scholar 

  • Lachowicz JE, Shen Y, Monsma FJ Jr, Sibley DR (1995) Molecular cloning of a novel G protein-coupled receptor related to the opiate receptor family. J Neurochem 64:34–40

    Article  CAS  Google Scholar 

  • Larsson KP, Olsen UB, Hansen AJ (2000) Nociceptin is a potent inhibitor of N-type Ca(2+) channels in rat sympathetic ganglion neurons. Neurosci Lett 296:121–124

    Article  CAS  Google Scholar 

  • Linari G, Agostini S, Broccardo M, Petrella C, Improta G (2006) Regulation of pancreatic secretion in vitro by nociceptin/orphanin FQ and opioid receptors: a comparative study. Pharmacol Res 54:356–360

    Article  CAS  Google Scholar 

  • Lotfy M, Sing J, Rashed H, Tariq S, Zilahi E, Adeghate E (2014) Mechanisms of the beneficial and protective effects of exenatide in diabetic rats. J Endocrinol 220:291–304

    Article  CAS  Google Scholar 

  • Lozinska L, Weström B, Prykhodko O, Lindqvist A, Wierup N, Ahrén B, Szwiec K, Pierzynowski SG (2016) Decreased insulin secretion and glucose clearance in exocrine pancreas-insufficient pigs. Exp Physiol 101:100–112

    Article  CAS  Google Scholar 

  • McDowell EM, Trump BF (1976) Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Path Lab Med 100:405–414

    CAS  PubMed  Google Scholar 

  • Osinski MA, Brown DR (2000) Orphanin FQ/nociceptin: a novel neuromodulator of gastrointestinal function? Peptides 21:999–1005

    Article  CAS  Google Scholar 

  • Ross J, Armstead WM (2005) NOC/oFQ activates ERK and JNK but not p38 MAPK to impair prostaglandin cerebrovasodilation after brain injury. Brain Res 054:95–102

    Article  Google Scholar 

  • Rother KI (2007) Diabetes treatment—bridging the divide. N Engl J Med 356:1499–1501

    Article  CAS  Google Scholar 

  • Sakoori K, Murphy NP (2008) Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 33:877–891

    Article  CAS  Google Scholar 

  • Schiene K, Tzschentke TM, Schröder W, Christoph T (2015) Mechanical hyperalgesia in rats with diabetic polyneuropathy is selectively inhibited by local peripheral nociceptin/orphanin FQ receptor and μ-opioid receptor agonism. Eur J Pharmacol 754:61–65

    Article  CAS  Google Scholar 

  • Schnedl WJ, Ferber S, Johnson JH, Newgard CB (1994) STZ transport and cytotoxicity: specific enhancement in GLUT2-expressing cells. Diabetes 43:1326–1333

    Article  CAS  Google Scholar 

  • Shetty R, Saeed T, Rashed H, Adeghate E, Singh J (2009) Effect of diabetes mellitus on acinar morphology, peroxidase concentration, and release in isolated rat lacrimal glands. Curr Eye Res 34:905–911

    Article  CAS  Google Scholar 

  • Tariq S, Rashed H, Nurulain SM, Emerald BS, Koturan S, Tekes K, Adeghate E (2015) Distribution of nociceptin in pancreatic islet cells of normal and diabetic rats. Pancreas 44:602–607

    Article  CAS  Google Scholar 

  • Tekes K, Hantos M, Bator G, Gyenge M, Laufer R, Folyovich A (2006) Endogenous nociceptin level in ischemic stroke: connection to serotonin system. Neuropsychopharmacol Hung 8:53–59

    PubMed  Google Scholar 

  • Tudurí E, Beiroa D, Stegbauer J, Fernø J, López M, Diéguez C, Nogueiras R (2016) Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation. Neuropharmacology 110 (Pt a):322-332

    Article  Google Scholar 

  • Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger BA, Eppler CM, Uhl GR (1994) cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett 348:75–79

    Article  CAS  Google Scholar 

  • WHO (2017) Model Lists of Essential Medicines. http://www.who.int/medicines/publications/essentialmedicines/en/ (Accessed 15 December 2017)

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  Google Scholar 

  • Yamamoto H, Uchigata Y, Okamoto H (1981) Streptozotocin and alloxan induce DNA strand breaks and poly (ADP-ribose) synthetase in pancreatic islets. Nature 294:284–286

    Article  CAS  Google Scholar 

  • Zadori ZS, Shujaa N, Koles L, Kiraly KP, Tekes K, Gyires K (2008) Nocistatin and nociceptin given centrally induce opioid-mediated gastric mucosal protection. Peptides 29:2257–2265

    Article  CAS  Google Scholar 

  • Zamboni L (1967) Buffered picric acid-formaldehyde: a new, rapid fixative for electron microscopy. J Cell Biol 35:148

    Google Scholar 

  • Zhang M, Zheng M, Schleicher RL (1994) Autoradiographic localization of beta-endorphin binding in the pancreas. Mol Cell Neurosci 5:684–690

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Rashed Hameed for technical assistance.

Funding

The study was supported by grants from the College of Medicine and Health Sciences (NP-15-41) and UAEU (ZCHS-7-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest A. Adeghate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeghate, E., Saeed, Z., D’Souza, C. et al. Effect of nociceptin on insulin release in normal and diabetic rat pancreas. Cell Tissue Res 374, 517–529 (2018). https://doi.org/10.1007/s00441-018-2903-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2903-1

Keywords

Navigation