Skip to main content

Advertisement

Log in

Cell-based therapies for neonatal lung disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Preterm birth occurs in approximately 11 % of all births worldwide. Advances in perinatal care have enabled the survival of preterm infants born as early as 23–24 weeks of gestation. However, many are affected by bronchopulmonary dysplasia (BPD)—a common respiratory complication of preterm birth, which has life-long consequences for lung health. Currently, there is no specific treatment for BPD. Recent advances in stem cell research have opened new therapeutic avenues for prevention/repair of lung damage. This review summarizes recent pre-clinical data and early clinical translation of cell-based therapies for BPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson IY, Bowden DH (1974) The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 30:35–42

    CAS  PubMed  Google Scholar 

  • Ahn SY, Chang YS, Kim SY, Sung DK, Kim ES, Rime SY, Yu WJ, Choi SJ, Oh WI, Park WS (2013) Long-term (postnatal day 70) outcome and safety of intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells in neonatal hyperoxic lung injury. Yonsei Med J 54:416–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alphonse RS, Vadivel A, Fung M, Shelley WC, Critser PJ, Ionescu L, O’Reilly M, Ohls RK, McConaghy S, Eaton F, Zhong S, Yoder M, Thebaud B (2014) Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth. Circulation 129:2144–2157

    Article  PubMed  PubMed Central  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180:1122–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CD, Ryan SL, Ingram DA, Seedorf GJ, Abman SH, Balasubramaniam V (2009) Endothelial colony-forming cells from preterm infants are increased and more susceptible to hyperoxia. Am J Respir Crit Care Med 180:454–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker CD, Balasubramaniam V, Mourani PM, Sontag MK, Black CP, Ryan SL, Abman SH (2012) Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. Eur Respir J 40:1516–1522

    Article  PubMed  Google Scholar 

  • Baker, CD, GJ Seedorf, BL Wisniewski, CP Black, SL Ryan, V Balasubramaniam and SH Abman (2013) Endothelial colony-forming cell conditioned media promotes angiogenesis in vitro and prevents pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 305:L73–L81

  • Balasubramaniam V, Mervis CF, Maxey AM, Markham NE, Abman SH (2007) Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniam V, Ryan SL, Seedorf GJ, Roth EV, Heumann TR, Yoder MC, Ingram DA, Hogan CJ, Markham NE, Abman SH (2010) Bone marrow-derived angiogenic cells restore lung alveolar and vascular structure after neonatal hyperoxia in infant mice. Am J Physiol Lung Cell Mol Physiol 298:L315–323

    Article  CAS  PubMed  Google Scholar 

  • Barcia, RN, Santos JM, Filipe M, Teixeira M, Martins JP, Almeida J, Agua-Doce A, Almeida SC, Varela A, Pohl S, Dittmar KE, Calado S, Simoes SI, Gaspar MM, Cruz ME, Lindenmaier W, Graca L, Cruz H, Cruz PE (2015) What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells? Stem Cells Int 583984

  • Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C (2013) Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications. Curr Stem Cell Res Ther 8:144–155

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Bhandari V (2014) Animal models of bronchopulmonary dysplasia. The term mouse models. Am J Physiol Lung Cell Mol Physiol 307:L936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertagnolli M, Nuyt AM, Thebaud B, Luu TM (2016) Endothelial progenitor cells as prognostic markers of preterm birth-associated complications. Stem Cells Transl Med (in press)

  • Borghesi A, Massa M, Campanelli R, Bollani L, Tzialla C, Figar TA, Ferrari G, Bonetti E, Chiesa G, de Silvestri A, Spinillo A, Rosti V, Stronati M (2009) Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med 180:540–546

    Article  PubMed  Google Scholar 

  • Bozyk PD, Popova AP, Bentley JK, Goldsmith AM, Linn MJ, Weiss DJ, Hershenson MB (2011) Mesenchymal stromal cells from neonatal tracheal aspirates demonstrate a pattern of lung-specific gene expression. Stem Cells Dev 20:1995–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YS, Oh W, Choi SJ, Sung DK, Kim SY, Choi EY, Kang S, Jin HJ, Yang YS, Park WS (2009) Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats. Cell Transplant 18:869–886

    Article  PubMed  Google Scholar 

  • Chang YS, Choi SJ, Sung DK, Kim SY, Oh W, Yang YS, Park WS (2011) Intratracheal transplantation of human umbilical cord blood derived mesenchymal stem cells dose-dependently attenuates hyperoxia-induced lung injury in neonatal rats. Cell Transplant 20:1843–1854

    Article  PubMed  Google Scholar 

  • Chang YS, Choi SJ, Ahn SY, Sung DK, Sung SI, Yoo HS, Oh WI, Park WS (2013) Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS ONE 8:e52419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, Park WS (2014) Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr 164:966–972 e966

    Article  PubMed  Google Scholar 

  • Chou HC, Li YT, Chen CM (2016) Human mesenchymal stem cells attenuate experimental bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Am J Transl Res 8:342–353

    PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Dziadosz M, Basch RS, Young BK (2016) Human amniotic fluid: a source of stem cells for possible therapeutic use. Am J Obstet Gynecol 214:321–327

    Article  PubMed  Google Scholar 

  • Fung ME, Thebaud B (2014) Stem cell-based therapy for neonatal lung disease: it is in the juice. Pediatr Res 75:2–7

    Article  PubMed  Google Scholar 

  • Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R, Porzionato A, Macchi V, Salmaso R, Scarpa M, Cozzi E, Fassina A, Navaglia F, Maran C, Onisto M, Caenazzo L, De Coppi P, De Caro R, Chiandetti L, Zaramella P (2013) Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pediatr Pulmonol 48:1070–1080

    Article  PubMed  Google Scholar 

  • Gulasi S, Atici A, Yilmaz SN, Polat A, Yilmaz M, Lacin MT, Orekici G, Celik Y (2016) Mesenchymal stem cell treatment in hyperoxia-induced lung injury in newborn rats. Pediatr Int 58:206–213

    Article  CAS  PubMed  Google Scholar 

  • Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, Kourembanas S (2012) Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2:170–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges RJ, Jenkin G, Hooper SB, Allison B, Lim R, Dickinson H, Miller SL, Vosdoganes P, Wallace EM (2012a) Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol 206(448):e448–415

    Google Scholar 

  • Hodges RJ, Lim R, Jenkin G, Wallace EM (2012b) Amnion epithelial cells as a candidate therapy for acute and chronic lung injury. Stem Cells Int 2012:709763

  • Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, Niklason L, Calle E, Le A, Randell SH, Rock J, Snitow M, Krummel M, Stripp BR, Vu T, White ES, Whitsett JA, Morrisey EE (2014) Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15:123–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  CAS  PubMed  Google Scholar 

  • Irwin D, Helm K, Campbell N, Imamura M, Fagan K, Harral J, Carr M, Young KA, Klemm D, Gebb S, Dempsey EC, West J, Majka S (2007) Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. Am J Physiol Lung Cell Mol Physiol 293:L941–951

    Article  CAS  PubMed  Google Scholar 

  • Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–U153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MV, Morrison TJ, Doherty DF, Mcauley DF, Matthay MA, Kissenpfennig A, O’Kane CM, Krasnodembskaya AD (2016) Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34:2210–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jobe AH (2011) The new bronchopulmonary dysplasia. Curr Opin Pediatr 23:167–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Las G, Shirihai OS (2014) Miro1: New wheels for transferring mitochondria. EMBO J 33:939–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Mao Q, Chu S, Mounayar M, Abdi R, Fodor W, Padbury JF, De Paepe ME (2014) Intranasal versus intraperitoneal delivery of human umbilical cord tissue-derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury. Am J Pathol 184:3344–3358

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S (2008) Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 10:140–151

    Article  CAS  PubMed  Google Scholar 

  • Mattar P, Bieback K (2015) Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells. Front Immunol 6:560

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobius MA, Rudiger M (2016) Mesenchymal stromal cells in the development and therapy of bronchopulmonary dysplasia. Mol Cell Pediatr 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Northway WH Jr, Rosan RC, Porter DY (1967) Pulmonary disease following respiratory therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 276:357–368

    Article  PubMed  Google Scholar 

  • O’Reilly M, Thebaud B (2014) Animal models of bronchopulmonary dysplasia. The term rat models. Am J Physiol Lung Cell Mol Physiol 307:L948–958

    Article  PubMed  Google Scholar 

  • O’Reilly M, Sozo F, Harding R (2013) Impact of preterm birth and bronchopulmonary dysplasia on the developing lung: long-term consequences for respiratory health. Clin Exp Pharmacol Physiol 40:765–773

    Article  PubMed  Google Scholar 

  • Pierro M, Ionescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, Emery D, Bodiga S, Eaton F, Peault B, Mosca F, Lazzari L, Thebaud B (2013) Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax 68:475–484.

  • Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM, Schumacher RE, Weiner GM, Filbrun AG, Hershenson MB (2010) Isolation of tracheal aspirate mesenchymal stromal cells predicts bronchopulmonary dysplasia. Pediatrics 126:e1127–1133

    Article  PubMed  Google Scholar 

  • Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Reddy R, Buckley S, Doerken M, Barsky L, Weinberg K, Anderson KD, Warburton D, Driscoll B (2004) Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol 286:L658–667

    Article  CAS  PubMed  Google Scholar 

  • Reynolds SD, Shen H, Reynolds PR, Betsuyaku T, Pilewski JM, Gambelli F, Di Giuseppe M, Ortiz LA, Stripp BR (2007) Molecular and functional properties of lung SP cells. Am J Physiol Lung Cell Mol Physiol 292:L972–983

    Article  CAS  PubMed  Google Scholar 

  • Roura S, Pujal JM, Galvez-Monton C, Bayes-Genis A (2015) The role and potential of umbilical cord blood in an era of new therapies: a review. Stem Cell Res Ther 6:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer ND, Gimble JM, Lopez MJ (2011) Mesenchymal stromal cells: past, present, and future. Vet Surg 40:129–139

    Article  PubMed  Google Scholar 

  • Strueby L, Thebaud B (2014) Advances in bronchopulmonary dysplasia. Expert Rev Respir Med 8:327–338

    Article  CAS  PubMed  Google Scholar 

  • Sutsko RP, Young KC, Ribeiro A, Torres E, Rodriguez M, Hehre D, Devia C, McNiece I, Suguihara C (2013) Long term reparative effects of mesenchymal stem cell therapy following neonatal hyperoxia-induced lung injury. Pediatr Res73:46–53

  • Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, Balasubramaniam V, Fredenburgh LE, Mitsialis SA, Kourembanas S, Kim CF (2012) Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 302:L829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F, Chen M, Hashimoto K, Abley D, Korbutt G, Archer SL, Thebaud B (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180:1131–1142

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassallo PF, Simoncini S, Ligi I, Chateau AL, Bachelier R, Robert S, Morere J, Fernandez S, Guillet B, Marcelli M, Tellier E, Pascal A, Simeoni U, Anfosso F, Magdinier F, Dignat-George F, Sabatier F (2014) Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 123:2116–2126

    Article  CAS  PubMed  Google Scholar 

  • Vosdoganes P, Hodges RJ, Lim R, Westover AJ, Acharya RY, Wallace EM, Moss TJ (2011) Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep. Am J Obstet Gynecol 205(156):e126–133

    Google Scholar 

  • Vosdoganes P, Lim R, Koulaeva E, Chan ST, Acharya R, Moss TJ, Wallace EM (2013) Human amnion epithelial cells modulate hyperoxia-induced neonatal lung injury in mice. Cytotherapy 15:1021–1029

  • Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thebaud B (2012) Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev 21:2789–2797

    Article  CAS  PubMed  Google Scholar 

  • Yannarelli G, Dayan V, Pacienza N, Lee CJ, Medin J, Keating A (2013) Human umbilical cord perivascular cells exhibit enhanced cardiomyocyte reprogramming and cardiac function after experimental acute myocardial infarction. Cell Transplant 22:1651–1666

    Article  PubMed  Google Scholar 

  • Yee M, Vitiello PF, Roper JM, Staversky RJ, Wright TW, McGrath-Morrow SA, Maniscalco WM, Finkelstein JN, O’Reilly MA (2006) Type II epithelial cells are critical target for hyperoxia-mediated impairment of postnatal lung development. Am J Physiol Lung Cell Mol Physiol 291:L1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Fang J, Su H, Yang M, Lai W, Mai Y, Wu Y (2012a) Bone marrow mesenchymal stem cells attenuate lung inflammation of hyperoxic newborn rats. Pediatr Transplant 16:589–598

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang H, Shi Y, Peng W, Zhang S, Zhang W, Xu J, Mei Y, Feng Z (2012b) The role of bone marrow-derived mesenchymal stem cells in the prevention of hyperoxia-induced lung injury in newborn mice. Cell Biol Int 36:589–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Fang J, Wu Y, Mai Y, Lai W, Su H (2013) Mesenchymal stem cells protect against neonatal rat hyperoxic lung injury. Expert Opin Biol Ther 13:817–829

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Thébaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Reilly, M., Thébaud, B. Cell-based therapies for neonatal lung disease. Cell Tissue Res 367, 737–745 (2017). https://doi.org/10.1007/s00441-016-2517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2517-4

Keywords

Navigation