Skip to main content

Advertisement

Log in

Augmented expression of gamma-glutamyl transferase 5 (GGT5) impairs testicular steroidogenesis by deregulating local oxidative stress

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

An increasingly pro-oxidant environment has been widely implicated in causing dysfunction of testicular steroidogenesis, but little progress has been made in understanding the underlying molecular mechanism. Here, we report that gamma-glutamyl transferase 5 (GGT5), a key metabolism component responsible for the catalysis of important anti-oxidant glutathione (GSH), is predominantly expressed in mammalian Leydig cells (LCs). Deregulated GGT5 expression negatively correlates with testosterone deficiency in the testes of type 2 diabetic mice. Consistently, overexpression of GGT5 potentiates the susceptibility of TM3 LCs to spontaneous oxidative stress during luteinizing hormone (LH)-stimulated steroidogenesis. From a mechanistic standpoint, the deleterious effect of GGT5 overexpression on testicular steroidogenesis may stem from an alteration of the local redox state because of GSH deficiency. The above-mentioned response might involve the impairment of extracellular signal-related kinase activation mediated directly by oxidative injury or indirectly by abnormal P38 activation, which in turn inhibits steroidogenic acute regulatory protein abundance in mitochondria and thus significantly sabotages the rate-limiting step during LH-induced steroidogenesis. Alternatively, GGT5 overexpression induces heme oxygenase 1 (HO-1) expression, which, as a key catalyst responsible for the oxidative degradation of heme, may inhibit the activities of the cytochrome P450 monooxygenases, thus substantially impairing testicular steroidogenesis. These results, coupled with the differential roles of mitogen-activated protein kinases and HO-1 signaling in spermatogenesis, lead us to propose a model in which a delicate balance between these two pathways modulated by the GGT5/oxidative stress cascade plays a central role during LH-stimulated steroidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LCs:

Leydig cells

DM:

Type 2 diabetes

StAR:

Steroidogenic acute regulatory protein

P5:

Pregnenolone

P450scc:

P450 side-chain cleavage

ROS:

Reactive oxygen species

GSH:

Glutathione

SOD:

Superoxide dismutase

GPx:

Glutathione peroxidase

GST:

Glutathione-S-transferase

GGT:

Gamma-glutamyl transferase

HO:

Heme oxygenases

CO:

Carbon monoxide

db-cAMP:

Dibutyryl cAMP

GCs:

Germ cells

EDS:

Ethane dimethane sulphonate

DMEM:

Dulbecco’s modified Eagle’s medium

LH:

Luteinizing hormone

LHR:

Luteinizing hormone receptor

22-ROH:

22R-hydroxycholesterol

MAPK:

Mitogen-activated protein kinase

BSO:

L-buthionine-sulfoximine

SAG:

S-Acetyl glutathione

CV:

Coefficients of variation

MDA:

Malondialdehyde

ZnPP:

Zinc protoporphyrin

CG:

Chorionic gonadotropin

CdCl2 :

Cadmium chloride

ERK:

Extracellular signal-related kinase

References

  • Aitken RJ, Roman SD (2008) Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol 636:154–171

    Article  CAS  PubMed  Google Scholar 

  • Allen JA, Diemer T, Janus P, Hales KH, Hales DB (2004) Bacterial endotoxin lipopolysaccharide and reactive oxygen species inhibit Leydig cell steroidogenesis via perturbation of mitochondria. Endocrine 25:265–275

    Article  CAS  PubMed  Google Scholar 

  • Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207

    Article  CAS  PubMed  Google Scholar 

  • Berra E, Diaz-Meco MT, Moscat J (1998) The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem 273:10792–10797

    Article  CAS  PubMed  Google Scholar 

  • Castillo AF, Orlando U, Helfenberger KE, Poderoso C, Podesta EJ (2015) The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol Cell Endocrinol 408:73-79

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhou L, Lin CY, Beattie MC, Liu J, Zirkin BR (2010) Effect of glutathione redox state on Leydig cell susceptibility to acute oxidative stress. Mol Cell Endocrinol 323:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corti A, Duarte TL, Giommarelli C, De Tata V, Paolicchi A, Jones GD, Pompella A (2009) Membrane gamma-glutamyl transferase activity promotes iron-dependent oxidative DNA damage in melanoma cells. Mutat Res 669:112–121

    Article  CAS  PubMed  Google Scholar 

  • Diemer T, Allen JA, Hales KH, Hales DB (2003) Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology 144:2882–2891

    Article  CAS  PubMed  Google Scholar 

  • Dohle GR, Smit M, Weber RF (2003) Androgens and male fertility. World J Urol 21:341–345

    Article  CAS  PubMed  Google Scholar 

  • Duarte A, Castillo AF, Castilla R, Maloberti P, Paz C, Podesta EJ, Cornejo Maciel F (2007) An arachidonic acid generation/export system involved in the regulation of cholesterol transport in mitochondria of steroidogenic cells. FEBS Lett 581:4023–4028

    Article  CAS  PubMed  Google Scholar 

  • Duarte A, Castillo AF, Podesta EJ, Poderoso C (2014) Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS One 9:e100387

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan J, Wu X, Arons E, Christou H (2008) The p38 mitogen-activated protein kinase pathway is involved in the regulation of heme oxygenase-1 by acidic extracellular pH in aortic smooth muscle cells. J Cell Biochem 105:1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G (2014) Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol (Lausanne) 5:56

    Google Scholar 

  • Hales DB, Allen JA, Shankara T, Janus P, Buck S, Diemer T, Hales KH (2005) Mitochondrial function in Leydig cell steroidogenesis. Ann N Y Acad Sci 1061:120–134

    Article  CAS  PubMed  Google Scholar 

  • Han B, Luo G, Shi ZZ, Barrios R, Atwood D, Liu W, Habib GM, Sifers RN, Corry DB, Lieberman MW (2002) Gamma-glutamyl leukotrienase, a novel endothelial membrane protein, is specifically responsible for leukotriene D(4) formation in vivo. Am J Pathol 161:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho CK (2011) Testosterone testing in adult males. Malays J Pathol 33:71–81

    PubMed  Google Scholar 

  • Hwang EC, Min KD, Jung SI, Ryu SB, Ahn KY, Lee K, Park K (2010) Testicular steroidogenesis is decreased by hyperthermia in old rats. Urol Int 84:347–352

    Article  CAS  PubMed  Google Scholar 

  • Ko EY, Sabanegh ES Jr, Agarwal A (2014) Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril 102:1518–1527

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Taguchi K, Yasuhiro T, Matsumoto T, Kamata K (2004) Impairment of PI3-K/Akt pathway underlies attenuated endothelial function in aorta of type 2 diabetic mouse model. Hypertension 44:956–962

    Article  CAS  PubMed  Google Scholar 

  • Korytowski W, Pilat A, Schmitt JC, Girotti AW (2013) Deleterious cholesterol hydroperoxide trafficking in steroidogenic acute regulatory (StAR) protein-expressing MA-10 Leydig cells: implications for oxidative stress-impaired steroidogenesis. J Biol Chem 288:11509–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koziorowska-Gilun M, Gilun P, Fraser L, Koziorowski M, Kordan W, Stefanczyk-Krzymowska S (2013) Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758). Reprod Domest Anim 48:7–14

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Rani L, Dhole B (2014) Role of oxygen in the regulation of Leydig tumor derived MA-10 cell steroid production: the effect of cobalt chloride. Syst Biol Reprod Med 60:112–118

    Article  CAS  PubMed  Google Scholar 

  • Laskey JW, Klinefelter GR, Kelce WR, Ewing LL (1994) Effects of ethane dimethanesulfonate (EDS) on adult and immature rabbit Leydig cells: comparison with EDS-treated rat Leydig cells. Biol Reprod 50:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R (2012) Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol 34:298–307

    Article  CAS  PubMed  Google Scholar 

  • Lee EH, Oh JH, Lee YS, Park HJ, Choi MS, Park SM, Kang SJ, Yoon S (2012) Gene expression analysis of toxicological pathways in TM3 Leydig cell lines treated with ethane dimethanesulfonate. J Biochem Mol Toxicol 26:213–223

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Gong EY, Hong CY, Kim KH, Han JS, Ryu JC, Chae HZ, Yun CH, Lee K (2009) ROS inhibit the expression of testicular steroidogenic enzyme genes via the suppression of Nur77 transactivation. Free Radic Biol Med 47:1591–1600

    Article  CAS  PubMed  Google Scholar 

  • Loy CJ, Yong EL (2001) Sex, infertility and the molecular biology of the androgen receptor. Curr Opin Obstet Gynecol 13:315–321

    Article  CAS  PubMed  Google Scholar 

  • Manfo FP, Nantia EA, Mathur PP (2014) Effect of environmental contaminants on mammalian testis. Curr Mol Pharmacol 7:119–135

    Article  CAS  PubMed  Google Scholar 

  • Martinelle N, Holst M, Soder O, Svechnikov K (2004) Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat Leydig cells by human chorionic gonadotropin. Endocrinology 145:4629–4634

    Article  CAS  PubMed  Google Scholar 

  • Mason JE, Starke RD, Van Kirk JE (2010) Gamma-glutamyl transferase: a novel cardiovascular risk biomarker. Prev Cardiol 13:36–41

    Article  CAS  PubMed  Google Scholar 

  • Meachem SJ, Nieschlag E, Simoni M (2001) Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur J Endocrinol 145:561–571

    Article  CAS  PubMed  Google Scholar 

  • Mistry D, Stockley RA (2010) Gamma-glutamyl transferase: the silent partner? COPD 7:285–290

    Article  PubMed  Google Scholar 

  • Mitra S, Srivastava A, Khanna S, Khandelwal S (2014) Consequences of tributyltin chloride induced stress in Leydig cells: an ex-vivo approach. Environ Toxicol Pharmacol 37:850–860

    Article  CAS  PubMed  Google Scholar 

  • Moriyama M, Jayakumar AR, Tong XY, Norenberg MD (2010) Role of mitogen-activated protein kinases in the mechanism of oxidant-induced cell swelling in cultured astrocytes. J Neurosci Res 88:2450–2458

    CAS  PubMed  Google Scholar 

  • Mossman BT, Lounsbury KM, Reddy SP (2006) Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. Am J Respir Cell Mol Biol 34:666–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motterlini R, Foresti R (2014) Heme oxygenase-1 as a target for drug discovery. Antioxid Redox Signal 20:1810–1826

    Article  CAS  PubMed  Google Scholar 

  • Nieschlag E, Simoni M, Gromoll J, Weinbauer GF (1999) Role of FSH in the regulation of spermatogenesis: clinical aspects. Clin Endocrinol (Oxf) 51:139–146

    Article  CAS  Google Scholar 

  • O’Shaughnessy PJ, Monteiro A, Fowler PA, Morris ID (2014) Identification of Leydig cell-specific mRNA transcripts in the adult rat testis. Reproduction 147:671–682

    Article  PubMed  Google Scholar 

  • Ojo OO, Bhadauria S, Rath SK (2013) Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice. PLoS One 8:e69086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa N, Goda N, Makino N, Yamaguchi T, Yoshimura Y, Suematsu M (2002) Leydig cell-derived heme oxygenase-1 regulates apoptosis of premeiotic germ cells in response to stress. J Clin Invest 109:457–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Peltola V, Huhtaniemi I, Metsa-Ketela T, Ahotupa M (1996) Induction of lipid peroxidation during steroidogenesis in the rat testis. Endocrinology 137:105–112

    CAS  PubMed  Google Scholar 

  • Piotrkowski B, Monzon CM, Pagotto RM, Reche CG, Besio M, Cymeryng CB, Pignataro OP (2009) Effects of heme oxygenase isozymes on Leydig cells steroidogenesis. J Endocrinol 203:155–165

    Article  CAS  PubMed  Google Scholar 

  • Rana SV (2014) Perspectives in endocrine toxicity of heavy metals—a review. Biol Trace Elem Res 160:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ruwanpura SM, McLachlan RI, Meachem SJ (2010) Hormonal regulation of male germ cell development. J Endocrinol 205:117–131

    Article  CAS  PubMed  Google Scholar 

  • Rydkina E, Turpin LC, Sahni A, Sahni SK (2012) Regulation of inducible heme oxygenase and cyclooxygenase isozymes in a mouse model of spotted fever group rickettsiosis. Microb Pathog 53:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ (2014) Antioxidants for male subfertility. Cochrane Database Syst Rev 12:CD007411

    PubMed  Google Scholar 

  • Siddiq FM, Sigman M (2002) A new look at the medical management of infertility. Urol Clin North Am 29:949–963

    Article  PubMed  Google Scholar 

  • Sivakumar R, Sivaraman PB, Mohan-Babu N, Jainul-Abideen IM, Kalliyappan P, Balasubramanian K (2006) Radiation exposure impairs luteinizing hormone signal transduction and steroidogenesis in cultured human leydig cells. Toxicol Sci 91:550–556

    Article  CAS  PubMed  Google Scholar 

  • Su CC (2014) Tanshinone IIA inhibits gastric carcinoma AGS cells through increasing p-p38, p-JNK and p53 but reducing p-ERK, CDC2 and cyclin B1 expression. Anticancer Res 34:7097–7110

    CAS  PubMed  Google Scholar 

  • Tai P, Ascoli M (2011) Reactive oxygen species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of ERK1/2 in Leydig cells. Mol Endocrinol 25:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena-Sempere M, Barreiro ML, Gonzalez LC, Gaytan F, Zhang FP, Caminos JE, Pinilla L, Casanueva FF, Dieguez C, Aguilar E (2002) Novel expression and functional role of ghrelin in rat testis. Endocrinology 143:717–725

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Zhang D, Gao Z, Li H, Zhang B, Zhang Q, Li L, Cheng Q, Pei D, Zheng J (2014) MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis. Cancer Gene Ther 21:416–426

    Article  CAS  PubMed  Google Scholar 

  • Tsai SC, Lu CC, Lin CS, Wang PS (2003) Antisteroidogenic actions of hydrogen peroxide on rat Leydig cells. J Cell Biochem 90:1276–1286

    Article  CAS  PubMed  Google Scholar 

  • Ucar H, Gur M, Gozukara MY, Kalkan GY, Baykan AO, Turkoglu C, Kaypakl O, Seker T, Sen O, Selek S, Cayl M (2015) Gamma glutamyl transferase activity is independently associated with oxidative stress rather than SYNTAX score. Scand J Clin Lab Invest 75:7–12

    Article  CAS  PubMed  Google Scholar 

  • Ulyanova T, Szel A, Kutty RK, Wiggert B, Caffe AR, Chader GJ, van Veen T (2001) Oxidative stress induces heme oxygenase-1 immunoreactivity in Muller cells of mouse retina in organ culture. Invest Ophthalmol Vis Sci 42:1370–1374

    CAS  PubMed  Google Scholar 

  • Valjevac A, Dzubur A, Nakas-Icindic E, Hadzovic-Dzuvo A, Lepara O, Kiseljakovic E, Jadric R (2011) Is gamma-glutamyl transferase activity a potential marker of left ventricular function during early postmyocardial infarction period? Future Cardiol 7:705–713

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Falcone T, Attaran M, Goldberg JM, Agarwal A, Sharma RK (2002) Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertil Steril 78:1272–1277

    Article  PubMed  Google Scholar 

  • Wickham S, West MB, Cook PF, Hanigan MH (2011) Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem 414:208–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young PR (2013) Perspective on the discovery and scientific impact of p38 MAP kinase. J Biomol Screen 18:1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Li W, Zhu C, Wang X, Li Z, Zhang J, Zhao J, Hu J, Li T, Zhang Y (2012) Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. J Biol Chem 287:40471–40483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Beattie MC, Lin CY, Liu J, Traore K, Papadopoulos V, Zirkin BR, Chen H (2013) Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reprod Toxicol 42:95–101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Hui Wang (Department of Medical Psychology, Fourth Military Medical University, China) for her careful assistance during the preparation of the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-jian Sun or Wei Zou.

Additional information

Wei Li and Zhi-qun Wu contributed equally to this work.

The authors thank the National Natural Science Foundation of China for financially supporting this research under NSFC Project: 31271248, 31440064, and 81101959.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wu, Zq., Zhang, S. et al. Augmented expression of gamma-glutamyl transferase 5 (GGT5) impairs testicular steroidogenesis by deregulating local oxidative stress. Cell Tissue Res 366, 467–481 (2016). https://doi.org/10.1007/s00441-016-2458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2458-y

Keywords

Navigation