Skip to main content
Log in

Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Genetic studies have shown that aberrant activation of p53 signaling leads to embryonic lethality. Maintenance of a fine balance of the p53 protein level is critical for normal development. Previously, we have reported that Jmjd5, a member of the Jumonji C (JmjC) family, regulates embryonic cell proliferation through the control of Cdkn1a expression. Since Cdkn1a is the representative p53-regulated gene, we have examined whether the expression of other p53 target genes is coincidentally upregulated with Cdkn1a in Jmjd5-deficient embryos. The expression of a subset of p53-regulated genes was increased in both Jmjd5 hypomorphic mouse embryonic fibroblasts (MEFs) and Jmjd5-deficient embryos at embryonic day 8.25 without the induced expression of Trp53. Intercrossing of Jmjd5-deficient mice with Trp53 knockout mice showed that the growth defect of Jmjd5 mutant cells was significantly recovered under a Trp53 null genetic background. Chromatin immunoprecipitation analysis in Jmjd5 hypomorphic MEFs indicated the increased recruitment of p53 at several p53 target gene loci, such as Cdkn1a, Pmaip1, and Mdm2. These results suggest that Jmjd5 is involved in the transcriptional regulation of a subset of p53-regulated genes, possibly through the control of p53 recruitment at the gene loci. In Jmjd5-deficient embryos, the enhanced recruitment of p53 might result in the abnormal activation of p53 signaling leading to embryonic lethality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2:a000935

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai C, Gu W (2010) p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16:528–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Del Rizzo PA, Krishnan S, Trievel RC (2012) Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function. Mol Cell Biol 32:4044–4052

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Lozano G (2009) 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 9:831–841

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M, Hill DE, Healy E, Rees JL, Hamilton SR et al (1995) Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 55:2910–2919

    CAS  PubMed  Google Scholar 

  • Frank AK, Leu JI, Zhou Y, Devarajan K, Nedelko T, Klein-Szanto A, Hollstein M, Murphy ME (2011) The codon 72 polymorphism of p53 regulates interaction with NF-{kappa}B and transactivation of genes involved in immunity and inflammation. Mol Cell Biol 31:1201–1213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghebranious N, Donehower LA (1998) Mouse models in tumor suppression. Oncogene 17:3385–3400

    Article  PubMed  Google Scholar 

  • Hsia DA, Tepper CG, Pochampalli MR, Hsia EY, Izumiya C, Huerta SB, Wright ME, Chen HW, Kung HJ, Izumiya Y (2010) KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc Natl Acad Sci U S A 107:9671–9676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449:105–108

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhang L, Qi H, Shao J, Shen J (2013) Identification and functional implication of nuclear localization signals in the N-terminal domain of JMJD5. Biochimie 95:2114–2122

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhang S, Qi H, Wang Z, Chen HW, Shao J, Shen J (2015) JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation. Biochim Biophys Acta 1853(10 Pt A):2286–2295, doi: 10.1016/j.bbamcr.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  • Ishimura A, Minehata K, Terashima M, Kondoh G, Hara T, Suzuki T (2012) Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression. Development 139:749–759

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Covington MF, DiTacchio L, Vollmers C, Panda S, Harmer SL (2010) Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc Natl Acad Sci U S A 107:21623–21628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    Article  CAS  PubMed  Google Scholar 

  • Kim TD, Oh S, Shin S, Janknecht R (2012a) Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS One 7:e34618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim TD, Shin S, Berry WL, Oh S, Janknecht R (2012b) The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem 113:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Hayashi-Takanaka Y, Goto Y, Takizawa N, Nozaki N (2008) The organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodies. Cell Struct Funct 33:61–73

    Article  CAS  PubMed  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Park JW, Sung HS, Choi YJ, Kim WH, Lee HS, Chung HJ, Shin HW, Cho CH, Kim TY, Li SH, Youn HD, Kim SJ, Chun YS (2014) PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. Oncogene 34:2897–2909

    Article  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marouco D, Garabadgiu AV, Melino G, Barlev NA (2013) Lysine-specific modifications of p53: a matter of life and death? Oncotarget 4:1556–1571

    Article  PubMed Central  PubMed  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    Article  CAS  PubMed  Google Scholar 

  • Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York, pp 371–373

    Google Scholar 

  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Oh S, Janknecht R (2012) Histone demethylase JMJD5 is essential for embryonic development. Biochem Biophys Res Commun 420:61–65

    Article  CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  CAS  PubMed  Google Scholar 

  • Schmid P, Lorenz A, Hameister H, Montenarh M (1991) Expression of p53 during mouse embryogenesis. Development 113:857–865

    CAS  PubMed  Google Scholar 

  • Sola S, Xavier JM, Santos DM, Aranha MM, Morgado AL, Jepsen K, Rodrigues CM (2011) p53 interaction with JMJD3 results in its nuclear distribution during mouse neural stem cell differentiation. PLoS One 6:e18421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai WW, Nguyen TT, Shi Y, Barton MC (2008) p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Mol Cell Biol 28:5139–5146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsukada T, Tomooka Y, Takai S, Ueda Y, Nishikawa S, Yagi T, Tokunaga T, Takeda N, Suda Y, Abe S et al (1993) Enhanced proliferative potential in culture of cells from p53-deficient mice. Oncogene 8:3313–3322

    CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhou X, Wu M, Wang C, Zhang X, Tao Y, Chen N, Zang J (2013) Structure of the JmjC-domain-containing protein JMJD5. Acta Crystallogr D Biol Crystallogr 69:1911–1920

    Article  CAS  PubMed  Google Scholar 

  • Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin YS, Yang SF, Chen CC, Izumiya Y, Yu JS, Kung HJ, Wang WC (2014) JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc Natl Acad Sci U S A 111:279–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams K, Christensen J, Rappsilber J, Nielsen AL, Johansen JV, Helin K (2014) The histone lysine demethylase JMJD3/KDM6B is recruited to p53 bound promoters and enhancer elements in a p53 dependent manner. PLoS One 9:e96545

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Youn MY, Yokoyama A, Fujiyama-Nakamura S, Ohtake F, Minehata K, Yasuda H, Suzuki T, Kato S, Imai Y (2012) JMJD5, a Jumonji C (JmjC) domain-containing protein, negatively regulates osteoclastogenesis by facilitating NFATc1 protein degradation. J Biol Chem 287:12994–13004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu H, Hu S, Baker J (2014) JMJD5 regulates cell cycle and pluripotency in human embryonic stem cells. Stem Cells 32:2098–2110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr A. Hirao (Kanazawa University, Japan) for providing Cdkn1a- and Trp53-deficient mice, Dr. T. Nakamura (Kansai Medical University, Japan) for providing the pEF6/FLAG-His6 plasmid, Dr. M. Yoshida (Japanese Foundation for Cancer Research, Japan) for providing the HA-p53-expression vector, and Dr. H. Kimura (Tokyo Institute of Technology, Japan) for providing the anti-H3K36me2 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Suzuki.

Additional information

This work was supported by Grants-in-Aid for Scientific Research C (Research Project numbers: 25460266 to A.I. and 15 K08263 to T.S.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Immunofluorescence with anti-single-strand DNA antibody to visualize apoptotic cells (red) in (a, b) wild-type and (c, d) Jmjd5Δ/Δ embryos at E8.5. DAPI (blue) was used for nuclear staining. Bars 100 μm (GIF 213 kb)

High resolution image (TIFF 2101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishimura, A., Terashima, M., Tange, S. et al. Jmjd5 functions as a regulator of p53 signaling during mouse embryogenesis. Cell Tissue Res 363, 723–733 (2016). https://doi.org/10.1007/s00441-015-2276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2276-7

Keywords

Navigation