Skip to main content

Advertisement

Log in

SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hair follicle melanocyte stem cells (McSCs) are responsible for hair pigmentation and also function as a major melanocyte reservoir for epidermal pigmentation. However, the molecular mechanism promoting McSCs for epidermal pigmentation remains elusive. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics key signaling involved in melanocyte growth, migration and differentiation. We therefore investigated the molecular basis for the contribution of hair follicle McSCs to epidermal pigmentation using the TPA induction model. We found that repetitive TPA treatment of female C57BL/6 mouse dorsal skin induced epidermal pigmentation by increasing the number of epidermal melanocytes. Particularly, TPA treatment induced McSCs to initiate proliferation, exit the stem cell niche and differentiate. We also demonstrated that TPA promotes melanoblast migration and differentiation in vitro. At the molecular level, TPA treatment induced robust expression of stem cell factor (SCF) in keratinocytes and c-kit in melanoblasts and melanocytes. Administration of ACK2, a neutralizing antibody against the Kit receptor, suppressed mouse epidermal pigmentation, decreased the number of epidermal melanocytes, and inhibited melanoblast migration. Taken together, our data demonstrate that TPA promotes the expansion, migration and differentiation of hair follicle McSCs for mouse epidermal pigmentation. SCF/c-kit signaling was required for TPA-induced migration and differentiation of hair follicle melanocytes. Our findings may provide an excellent model to investigate the signaling mechanisms regulating epidermal pigmentation from mouse hair follicle McSCs, and a potential therapeutic option for skin pigmentation disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arita Y, Santiago-Schwarz F, Coppock DL (2000) Survival mechanisms induced by 12-O-tetradecanoylphorbol-13-acetate in normal human melanocytes include inhibition of apoptosis and increased Bcl-2 expression. Melanoma Res 10:412–420

    Article  CAS  PubMed  Google Scholar 

  • Botchkareva NV, Khlgatian M, Longley BJ, Botchkarev VA, Gilchrest BA (2001) SCF/c-kit signaling is required for cyclic regeneration of the hair pigmentation unit. FASEB J 15:645–658

    Article  CAS  PubMed  Google Scholar 

  • Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130:5241–5255

    Article  CAS  PubMed  Google Scholar 

  • Cable J, Jackson IJ, Steel KP (1995) Mutations at the W locus affect survival of neural crest-derived melanocytes in the mouse. Mech Dev 50:139–150

    Article  CAS  PubMed  Google Scholar 

  • Chao-Hsing KA, Hsin-Su YU (1991) A study of the effects of phorbol 12-myristate-13-acetate on cell differentiation of pure human melanocytes in vitro. Arch Dermatol Res 283:119–124

    Article  CAS  PubMed  Google Scholar 

  • Chou WC, Takeo M, Rabbani P, Hu H, Lee W, Chung YR, Carucci J, Overbeek P, Ito M (2013) Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat Med 19:924–929

    Article  CAS  PubMed  Google Scholar 

  • Cichocki M, Dalek M, Szamalek M, Baer-Dubowska W (2014) Naturally occurring phenolic acids modulate TPA-induced activation of EGFR, AP-1, and STATs in mouse epidermis. Nutr Cancer 66:308–314

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Shen LY, Wang GC (1991) Role of hair follicles in the repigmentation of vitiligo. J Investig Dermatol 97:410–416

    Article  CAS  PubMed  Google Scholar 

  • Czajkowski R, Pokrywczynska M, Placek W, Zegarska B, Tadrowski T, Drewa T (2010) Transplantation of cultured autologous melanocytes: hope or danger? Cell Transplant 19:639–643

    Article  PubMed  Google Scholar 

  • Falabella R (2009) Vitiligo and the melanocyte reservoir. Indian J Dermatol 54:313–318

    Article  PubMed Central  PubMed  Google Scholar 

  • Falabella R, Barona MI (2009) Update on skin repigmentation therapies in vitiligo. Pigment Cell Melanoma Res 22:42–65

    Article  CAS  PubMed  Google Scholar 

  • Galli SJ, Zsebo KM, Geissler EN (1994) The kit ligand, stem cell factor. Adv Immunol 55:1–96

    Article  CAS  PubMed  Google Scholar 

  • Grichnik JM, Burch JA, Burchette J, Shea CR (1998) The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Investig Dermatol 111:233–238

    Article  CAS  PubMed  Google Scholar 

  • Gu Q, Tan M, Sun Y (2007) SAG/ROC2/Rbx2 is a novel activator protein-1 target that promotes c-Jun degradation and inhibits 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic transformation. Cancer Res 67:3616–3625

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Yang K, Deng F, Ye J, Xing Y, Li Y, Lian X, Yang T (2012) Wnt3a promotes melanin synthesis of mouse hair follicle melanocytes. Biochem Biophys Res Commun 420:799–804

    Article  CAS  PubMed  Google Scholar 

  • Hachiya A, Kobayashi A, Ohuchi A, Takema Y, Imokawa G (2001) The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet-B-induced pigmentation. J Investig Dermatol 116:578–586

    Article  CAS  PubMed  Google Scholar 

  • Hachiya A, Sriwiriyanont P, Kobayashi T, Nagasawa A, Yoshida H, Ohuchi A, Kitahara T, Visscher MO, Takema Y, Tsuboi R, Boissy RE (2009) Stem cell factor-KIT signalling plays a pivotal role in regulating pigmentation in mammalian hair. J Pathol 218:30–39

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Yaar M, Gilchrest BA (1995) Endothelin-1 of keratinocyte origin is a mediator of melanocyte dendricity. J Investig Dermatol 105:744–748

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Morita T, Sieber-Blum M (1993) In vitro clonal analysis of mouse neural crest development. Dev Biol 157:517–525

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Kawa Y, Ono H, Okura M, Baba T, Kubota Y, Nishikawa SI, Mizoguchi M (1999) Removal of stem cell factor or addition of monoclonal anti-c-KIT antibody induces apoptosis in murine melanocyte precursors. J Investig Dermatol 112:796–801

    Article  CAS  PubMed  Google Scholar 

  • Jeon S, Kim NH, Kim JY, Lee AY (2009) Stem cell factor induces ERM proteins phosphorylation through PI3K activation to mediate melanocyte proliferation and migration. Pigment Cell Melanoma Res 22:77–85

    Article  CAS  PubMed  Google Scholar 

  • Jiao X, Katiyar S, Willmarth NE, Liu M, Ma X, Flomenberg N, Lisanti MP, Pestell RG (2010) c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem 285:8218–8226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim MY, Choi TY, Kim JH, Lee JH, Kim JG, Sohn KC, Yoon KS, Kim CD, Lee JH, Yoon TJ (2010) MKK6 increases the melanocyte dendricity through the regulation of Rho family GTPases. J Dermatol Sci 60:114–119

    Article  CAS  PubMed  Google Scholar 

  • Kunisada T, Lu SZ, Yoshida H, Nishikawa S, Nishikawa S, Mizoguchi M, Hayashi S, Tyrrell L, Williams DA, Wang X, Longley BJ (1998a) Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. J Exp Med 187:1565–1573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kunisada T, Yoshida H, Yamazaki H, Miyamoto A, Hemmi H, Nishimura E, Shultz LD, Nishikawa S, Hayashi S (1998b) Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 125:2915–2923

    CAS  PubMed  Google Scholar 

  • Lee AY, Kim NH, Choi WI, Youm YH (2005) Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J Investig Dermatol 124:976–983

    Article  CAS  PubMed  Google Scholar 

  • Lei M, Yang T, Lai X, Bai X, Qiu W, Lian X, Yang L (2013) Upregulation of interfollicular epidermal and hair infundibulum beta-catenin expression in Gsdma3 mutant mice. Acta Histochem 115:63–69

    Article  CAS  PubMed  Google Scholar 

  • Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850

    Article  CAS  PubMed  Google Scholar 

  • Moretti S, Spallanzani A, Amato L, Hautmann G, Gallerani I, Fabiani M, Fabbri P (2002) New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 15:87–92

    Article  CAS  PubMed  Google Scholar 

  • Motro B, van der Kooy D, Rossant J, Reith A, Bernstein A (1991) Contiguous patterns of c-kit and steel expression: analysis of mutations at the W and Sl loci. Development 113:1207–1221

    CAS  PubMed  Google Scholar 

  • Nataf V, Le Douarin NM (2000) Induction of melanogenesis by tetradecanoylphorbol-13 acetate and endothelin 3 in embryonic avian peripheral nerve cultures. Pigment Cell Res 13:172–178

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416:854–860

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307:720–724

    Article  CAS  PubMed  Google Scholar 

  • Nishimura EK, Suzuki M, Igras V, Du J, Lonning S, Miyachi Y, Roes J, Beermann F, Fisher DE (2010) Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 6:130–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ono H, Kawa Y, Asano M, Ito M, Takano A, Kubota Y, Matsumoto J, Mizoguchi M (1998) Development of melanocyte progenitors in murine Steel mutant neural crest explants cultured with stem cell factor, endothelin-3, or TPA. Pigment Cell Res 11:291–298

    Article  CAS  PubMed  Google Scholar 

  • Osawa M, Egawa G, Mak SS, Moriyama M, Freter R, Yonetani S, Beermann F, Nishikawa S (2005) Molecular characterization of melanocyte stem cells in their niche. Development 132:5589–5599

    Article  CAS  PubMed  Google Scholar 

  • Prince S, Wiggins T, Hulley PA, Kidson SH (2003) Stimulation of melanogenesis by tetradecanoylphorbol 13-acetate (TPA) in mouse melanocytes and neural crest cells. Pigment Cell Res 16:26–34

    Article  CAS  PubMed  Google Scholar 

  • Przybyszewski J, Wang W, Au A, Perry C, Guetzko M, Koehler K, Birt DF (2010) Dietary energy restriction, in part through glucocorticoid hormones, mediates the impact of 12-O-tetradecanoylphorbol-13-acetate on jun D and fra-1 in Sencar mouse epidermis. Mol Carcinog 49:592–602

    CAS  PubMed  Google Scholar 

  • Qiu W, Lei M, Li J, Wang N, Lian X (2014) Activated Hair Follicle Stem Cells and Wnt/beta-catenin Signaling Involve in Pathnogenesis of Sebaceous Neoplasms. Int J Med Sci 11:1022–1028

    Article  PubMed Central  PubMed  Google Scholar 

  • Rabbani P, Takeo M, Chou W, Myung P, Bosenberg M, Chin L, Taketo MM, Ito M (2011) Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145:941–955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R (2006) Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res 19:595–605

    Article  CAS  PubMed  Google Scholar 

  • Sharov A, Tobin DJ, Sharova TY, Atoyan R, Botchkarev VA (2005) Changes in different melanocyte populations during hair follicle involution (catagen). J Investig Dermatol 125:1259–1267

    Article  CAS  PubMed  Google Scholar 

  • Stavroulaki M, Kardassis D, Chatzaki E, Sakellaris G, Lindschau C, Haller H, Tosca A, Krasagakis K (2008) Exposure of normal human melanocytes to a tumor promoting phorbol ester reverses growth suppression by transforming growth factor beta. J Cell Physiol 214:363–370

    Article  CAS  PubMed  Google Scholar 

  • Steingrimsson E, Copeland NG, Jenkins NA (2005) Melanocyte stem cell maintenance and hair graying. Cell 121:9–12

    Article  CAS  PubMed  Google Scholar 

  • Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, Nakauchi H, Tanaka Y, McMillan JR, Sawamura D, Yancey K, Shimizu H, Nishimura EK (2011) Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 8:177–187

    Article  CAS  PubMed  Google Scholar 

  • Wang DG, Xu XH, Ma HJ, Li CR, Yue XZ, Gao J, Zhu WY (2013) Stem cell factor combined with matrix proteins regulates the attachment and migration of melanocyte precursors of human hair follicles in vitro. Biol Pharm Bull 36:1317–1325

    Article  CAS  PubMed  Google Scholar 

  • Wehrle-Haller B, Weston JA (1995) Soluble and cell-bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway. Development 121:731–742

    CAS  PubMed  Google Scholar 

  • Widlund HR, Fisher DE (2003) Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 22:3035–3041

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Chen J, Jiang W, Huang E, Cui J, Kim SH, Hu N, Liu H, Zhang W, Li R, Chen X, Kong Y, Zhang J, Wang J, Wang L, Shen J, Luu HH, Haydon RC, Lian X, Yang T, He TC (2012) Conditional immortalization establishes a repertoire of mouse melanocyte progenitors with distinct melanogenic differentiation potential. J Investig Dermatol 132:2479–2483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Nature Science Foundation of China (Grant number: 31170924, 30972645). We thank Dr. Randall B. Widelitz (University of Southern California) for carefully revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjin Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 30 kb)

Fig. S2

(DOCX 1320 kb)

Fig. S3

(DOCX 528 kb)

Fig. S4

(DOCX 359 kb)

Fig. S5

(DOCX 329 kb)

Fig. S6

(DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Yang, K., Lei, M. et al. SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation. Cell Tissue Res 360, 333–346 (2015). https://doi.org/10.1007/s00441-014-2101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2101-8

Keywords

Navigation