Skip to main content

Advertisement

Log in

Applications for single cell trajectory analysis in inner ear development and regeneration

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Single cell trajectory analysis is a computational approach that orders cells along a pseudotime axis. This temporal modeling approach allows the characterization of transitional processes such as lineage development, response to insult, and tissue regeneration. The concept can also be applied to resolve spatial organization of cells within the originating tissue. Known as temporal and spatial transcriptomics, respectively, these methods belong to the most powerful analytical techniques for quantitative gene expression data currently available. Here, we discuss three different approaches: principal component analysis, the ‘Monocle’ algorithm, and self-organizing maps. We use a previously published qRT-PCR dataset of single neuroblast cells isolated from the developing mouse inner ear to highlight the basic features of the three methods and their individual limitations, as well as the distinct advantages that make them useful for research on the inner ear. The complex developmental morphogenesis of the inner ear and its specific challenges such as the paucity of cells as well as important open questions such as sensory hair cell regeneration render this organ a prime target for single cell trajectory analysis strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler HJ, Raphael Y (1996) New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett 205:17–20

    Article  CAS  PubMed  Google Scholar 

  • Arias AM, Hayward P (2006) Filtering transcriptional noise during development: concepts and mechanisms. Nat Rev Genet 7:34–44

    Article  CAS  PubMed  Google Scholar 

  • Bar-Joseph Z, Gitter A, Simon I (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 13:552–564

    Article  CAS  PubMed  Google Scholar 

  • Bendall SC, Simonds EF, Qiu P, el Amir AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bendall SC, Davis KL, el Amir AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP, Pe’er D (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bengtsson M, Stahlberg A, Rorsman P, Kubista M (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15:1388–1392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blow N (2009) Microfluidics: the great divide. Nat Methods 6:683–685

    Article  CAS  Google Scholar 

  • Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS (2014) Single cell dissection of early kidney development: multilineage priming. Development 141:3093–3101

    Article  CAS  PubMed  Google Scholar 

  • Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, Winton DJ (2013) Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495:65–69

    Article  CAS  PubMed  Google Scholar 

  • Cafaro J, Lee GS, Stone JS (2007) Atoh1 expression defines activated progenitors and differentiating hair cells during avian hair cell regeneration. Dev Dyn 236:156–170

    Article  CAS  PubMed  Google Scholar 

  • Corwin JT, Cotanche DA (1988) Regeneration of sensory hair cells after acoustic trauma. Science 240:1772–1774

    Article  CAS  PubMed  Google Scholar 

  • Doetzlhofer A, White P, Lee YS, Groves A, Segil N (2006) Prospective identification and purification of hair cell and supporting cell progenitors from the embryonic cochlea. Brain Res 1091:282–288

    Article  CAS  PubMed  Google Scholar 

  • Draper BA, Kyungim B, Stewart Bartlett M, Beveridge JR (2003) Regognizing faces with PCA and ICA. Comp Vision Image Underst 91:115–137

    Article  Google Scholar 

  • Durruthy-Durruthy R, Gottlieb A, Hartman BH, Waldhaus J, Laske RD, Altman R, Heller S (2014a) Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157:964–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Durruthy-Durruthy R, Gottlieb A, Heller S (2014b) Three-dimensional computational reconstruction of tissues with hollow spherical morphologies using single cell gene expression data. Nat Protocols. doi:10.1038/nprot.2015.022

  • el Amir AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552

    Article  CAS  PubMed Central  Google Scholar 

  • Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:391–401

    Article  CAS  PubMed  Google Scholar 

  • Herget M, Scheibinger M, Guo Z, Jan TA, Adams CM, Cheng AG, Heller S (2013) A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis. PLoS ONE 8:e66026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holton T, Hudspeth AJ (1983) A micromechanical contribution to cochlear tuning and tonotopic organization. Science 222:508–510

    Article  CAS  PubMed  Google Scholar 

  • Hyvarinen A (1997) Independent component analysis by minimization of mutual information, vol Report A46. Helsinki University of Technology, Helsinki

    Google Scholar 

  • Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430

    Article  CAS  PubMed  Google Scholar 

  • Jan TA, Chai R, Sayyid ZN, Cheng AG (2011) Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry. J Vis Exp e3432

  • Jolliffe IT (2002) Principal Component Analysis. Springer, New York

    Google Scholar 

  • Kohonen T, Kaski S, Somervuo P, Lagus K, Oja M, Paatero V (2001) Self-organizing maps. Springer Series in Information Sciences, vol 30. Springer, Berlin, pp 114–122

  • Levsky JM, Singer RH (2003) Gene expression and the myth of the average cell. Trends Cell Biol 13:4–6

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu H, Sage C, Huang M, Chen ZY, Heller S (2004) Islet-1 expression in the developing chicken inner ear. J Comp Neurol 477:1–10

    Article  CAS  PubMed  Google Scholar 

  • Liberman LD, Wang H, Liberman MC (2011) Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. J Neurosci 31:801–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320:65–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma Q, Chen Z, del Barco BI, de la Pompa JL, Anderson DJ (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    Article  CAS  PubMed  Google Scholar 

  • McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94:814–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 36:213–231

    Article  CAS  PubMed  Google Scholar 

  • Mutai H, Mann S, Heller S (2005) Identification of chicken transmembrane channel-like (TMC) genes: expression analysis in the cochlea. Neuroscience 132:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Pina C, Fugazza C, Tipping AJ, Brown J, Soneji S, Teles J, Peterson C, Enver T (2012) Inferring rules of lineage commitment in haematopoiesis. Nat Cell Biol 14:287–294

    Article  CAS  PubMed  Google Scholar 

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ricci AJ, Gray-Keller M, Fettiplace R (2000) Tonotopic variations of calcium signalling in turtle auditory hair cells. J Physiol 524(Pt 2):423–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2003) Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40:983–990

    Article  CAS  PubMed  Google Scholar 

  • Roberson DF, Weisleder P, Bohrer PS, Rubel EW (1992) Ongoing production of sensory cells in the vestibular epithelium of the chick. Hear Res 57:166–174

    Article  CAS  PubMed  Google Scholar 

  • Roberson DW, Alosi JA, Cotanche DA (2004) Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium. J Neurosci Res 78:461–471

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    Article  CAS  PubMed  Google Scholar 

  • Ryals BM, Rubel EW (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail. Science 240:1774–1776

    Article  CAS  PubMed  Google Scholar 

  • Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S (2011) Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep 1:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A 96:2907–2912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toriello NM, Douglas ES, Thaitrong N, Hsiao SC, Francis MB, Bertozzi CR, Mathies RA (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 105:20173–20178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Roon MA, Aten JA, van Oven CH, Charles R, Lamers WH (1989) The initiation of hepatocyte-specific gene expression within embryonic hepatocytes is a stochastic event. Dev Biol 136:508–516

    Article  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durruthy-Durruthy, R., Heller, S. Applications for single cell trajectory analysis in inner ear development and regeneration. Cell Tissue Res 361, 49–57 (2015). https://doi.org/10.1007/s00441-014-2079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2079-2

Keywords

Navigation