Skip to main content
Log in

Developmental changes in the expression level of connexin36 in the rat retina

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Connexin36 (Cx36) is the major gap junction forming protein in the brain and the retina; thus, alterations in its expression indicate changes in the corresponding circuitry. Many structural changes occur in the early postnatal retina before functional neuronal circuits are finalized, including those that incorporate gap junctions. To reveal the time-lapse formation of inner retinal gap junctions, we examine the developing postnatal rat retina from birth (P0) to young adult age (P20) and follow the expression of Cx36 in the mRNA and protein levels. We found a continuous elevation in the expression of both the Cx36 transcript and protein between P0 and P20 and a somewhat delayed Cx36 plaque formation throughout the inner plexiform layer (IPL) starting at P10. By using tristratificated calretinin positive (CaR+) fibers in the IPL as a guide, we detected a clear preference of Cx36 plaques for the ON sublamina from the earliest time of detection. This distributional preference became more pronounced at P15 and P20 due to the emergence and widespread expression of large (>0.1 μm2) Cx36 plaques in the ON sublamina. Finally, we showed that parvalbumin-positive (PV+) AII amacrine cell dendrites colocalize with Cx36 plaques as early as P10 in strata 3 and 4, whereas colocalizations in stratum 5 became characteristic only around P20. We conclude that Cx36 expression in the rat IPL displays a characteristic succession of changes during retinogenesis reflecting the formation of the underlying electrical synaptic circuitry. In particular, AII cell gap junctions, first formed with ON cone bipolar cells and later with other AII amacrine cells, accounted for the observed Cx36 expressional changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Araki CM, Hamassaki-Britto DE (2000) Calretinin co-localizes with the NMDA receptor subunit NR1 in cholinergic amacrine cells of the rat retina. Brain Res 869:220–224

    Article  PubMed  CAS  Google Scholar 

  • Belliveau DJ, Kidder GM, Naus CC (1991) Expression of gap junction genes during postnatal neural development. Dev Gene 12:308–317

    Article  CAS  Google Scholar 

  • Blankenship AG, Hamby AM, Firl A, Vyas S, Maxeiner S, Willecke K, Feller MB (2005) The role of neuronal connexins 36 and 45 in shaping spontaneous firing patterns in the developing retina. J Neurosci 31:9998–10008

    Article  Google Scholar 

  • Bloomfield SA, Völgyi B (2004) Function and plasticity of homologous coupling between AII amacrine cells. Vision Res 44:3297–3306

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield SA, Völgyi B (2009) The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10:495–506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Braekevelt CR, Hollenberg MJ (1970) The development of the retina of the albino rat. Am J Anat 127:281–301

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in vertebratebrain. J Cell Biol 40:648–677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cai J, Cheng A, Luo Y, Lu C, Mattson MP, Rao MS, Furukawa K (2004) Membrane properties of rat embryonic multipotent neural stem cells. J Neurochem 88:212–226

    Article  PubMed  CAS  Google Scholar 

  • Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J Comp Neurol 188:263–272

    Article  PubMed  CAS  Google Scholar 

  • Casini G, Rickman DW, Trasarti L, Brecha NC (1998) Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina. Brain Res Dev Brain Res 111:107–117

    Article  PubMed  CAS  Google Scholar 

  • Cheng A, Tang H, Cai J, Zhu M, Zhang X, Rao M, Mattson MP (2004) Gap junctional communication is required to maintain mouse cortical neural progenitor cells in a proliferative state. Dev Biol 272:203–216

    Article  PubMed  CAS  Google Scholar 

  • Cherry TJ, Trimarchi JM, Stadler MB, Cepko CL (2009) Development and diversification of retinal amacrine interneurons at single cell resolution. Proc Natl Acad Sci U S A 106:9495–9500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cruciani V, Mikalsen SO (2006) The vertebrate connexin family. Cell Mol Life Sci 63:1125–1140

    Article  PubMed  CAS  Google Scholar 

  • Deans MR, Völgyi B, Goodenough DA, Bloomfield SA, Paul DL (2002) Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36:703–712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dedek K, Schultz K, Pieper M, Dirks P, Maxeiner S, Willecke K, Weiler R, Janssen-Bienhold U (2006) Localization of heterotypic gap junctions composed of connexin45 and connexin36 in the rod pathway of the mouse retina. Eur J Neurosci 24:1675–1686

    Article  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1965) Cell junctions in amphibian retina. J Cell Biol 26:263–291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feigenspan A, Teubner B, Willecke K, Weiler R (2001) Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 21:230–239

    PubMed  CAS  Google Scholar 

  • Feigenspan A, Janssen-Bienhold U, Hormuzdi S, Monyer H, Degen J, Söhl G, Willecke K, Ammermüller J, Weiler R (2004) Expression of connexin36 in cone pedicles and OFF-cone bipolar cells of the mouse retina. J Neurosci 24:3325–3334

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Eiberger B, Janssen-Bienhold U, de Sevilla Müller LP, Tjarks A, Kim JS, Maschke S, Dobrowolski R, Sasse P, Weiler R, Fleischmann BK, Willecke K (2010) Neuronal connexin-36 can functionally replace connexin-45 in mouse retina but not in the developing heart. J Cell Sci 123:3605–3615

    Article  PubMed  CAS  Google Scholar 

  • Furshpan EJ, Potter DD (1957) Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 180:342–343

    Article  PubMed  CAS  Google Scholar 

  • Gábriel R, Witkovsky P (1998) Cholinergic, but not the rod pathway-related glycinergic (All), amacrine cells contain calretinin in the rat retina. Neurosci Lett 247:179–182

    Article  PubMed  Google Scholar 

  • Gábriel R, Völgyi B, Pollák E (1998) Calretinin-immunoreactive elements in the retina and optic tectum of the frog, Rana esculenta. Brain Res 782:53–62

    Article  PubMed  Google Scholar 

  • Gábriel R, Völgyi B, Pollák E (1999) Most calretinin-containing amacrine cells in the rabbit retina co-localize glycine. Vis Neurosci 16:983–990

    Article  PubMed  Google Scholar 

  • Gimlich RL, Kumar NM, Gilula NB (1990) Differential regulation of the levels of three gap junction mRNAs in Xenopus embryos. J Cell Biol 110:597–605

    Article  PubMed  CAS  Google Scholar 

  • Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, Willecke KS (2000) Expression patterns of connexin genes in mouse retina. J Comp Neurol 425:193–201

    Article  PubMed  Google Scholar 

  • Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, Willecke K, Weiler R (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044

    PubMed  Google Scholar 

  • Han Y, Massey SC (2005) Electrical synapses in retinal ON cone bipolar cells: subtype-specific expression of connexins. Proc Natl Acad Sci U S A 102:13313–13318

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hidaka S, Akahori Y, Kurosawa Y (2004) Dendrodendritic electrical synapses between mammalian retinal ganglion cells. J Neurosci 24:10553–10567

    Article  PubMed  CAS  Google Scholar 

  • Hombach S, Janssen-Bienhold U, Söhl G, Schubert T, Büssow H, Ott T, Weiler R, Willecke K (2004) Functional expression of connexin57 in horizontal cells of the mouse retina. Eur J Neurosci 19:2633–2640

    Article  PubMed  Google Scholar 

  • Kihara AH, Mantovani de Castro L, Belmonte MA, Yan CY, Moriscot AS, Hamassaki DE (2006) Expression of connexins 36, 43, and 45 during postnatal development of the mouse retina. J Neurobiol 66:1397–1410

    Article  PubMed  CAS  Google Scholar 

  • Kihara AH, Paschon V, Cardoso CM, Higa GS, Castro LM, Hamassaki DE, Britto LR (2009) Connexin36, an essential element in the rod pathway, is highly expressed in the essentially rodless retina of Gallus gallus. J Comp Neurol 512:651–663

    Article  PubMed  CAS  Google Scholar 

  • Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LR (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28:39–52

    Article  PubMed  CAS  Google Scholar 

  • Knop G, Pottek M, Monyer H, Weiler R, Dedek K (2013) Morphological and physiological properties of EGFP- expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci online ahead

  • Lee EJ, Han JW, Kim HJ, Kim IB, Lee MY, Oh SJ, Chung JW, Chun MH (2003) The immunocytochemical localization of connexin 36 at rod and cone gap junctions in the guinea pig retina. Eur J Neurosci 18:2925–2934

    Article  PubMed  Google Scholar 

  • Lee EJ, Kim HJ, Lim EJ, Kim IB, Kang WS, Oh SJ, Rickman DW, Chung JW, Chun MH (2004) AII amacrine cells in the mammalian retina show disabled-1 immunoreactivity. J Comp Neurol 470:372–381

    Article  PubMed  CAS  Google Scholar 

  • Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S, Davidson KG, Yasumura T, Shigemoto R, Rash JE, Nagy JI (2008) Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J Neurosci 28:9769–9789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin B, Jakobs TC, Masland RH (2005) Different functional types of bipolar cells use different gap- junctional proteins. J Neurosci 25:6696–6701

    Article  PubMed  CAS  Google Scholar 

  • Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S (2013) Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 37:141–146

    Article  PubMed  Google Scholar 

  • Massey SC, O'Brien JJ, Trexler EB, Li W, Keung JW, Mills SL, O'Brien J (2003) Multiple neuronal connexins in the mammalian retina. Cell Commun Adhes 10:425–430

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Arai Y, Urano A, Hyodo S (1991) Androgen regulates gap junction mRNA expression in androgen-sensitive motoneurons in the rat spinal cord. Neurosci Lett 131:159–162

    Article  PubMed  CAS  Google Scholar 

  • Maxeiner S, Dedek K, Janssen-Bienhold U, Ammermüller J, Brune H, Kirsch T, Pieper M, Degen J, Krüger O, Willecke K, Weiler R (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impared visual transmission. J Neurosci 25:566–576

    Article  PubMed  CAS  Google Scholar 

  • Micevych PE, Abelson L (1991) Distribution of mRNAs coding for liver and heart gap junction proteins in the rat central nervous system. J Comp Neurol 305:96–118

    Article  PubMed  CAS  Google Scholar 

  • Mills SL, O'Brien JJ, Li W, O'Brien J, Massey SC (2001) Rod pathways in the mammalian retina use connexin36. J Comp Neurol 436:336–350

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mojumder DK, Wensel TG, Frishman LJ (2008) Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina. Mol Vis 14:1600–1613

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nishi M, Kumar NM, Gilula NB (1991) Developmental regulation of gap junction gene expression during mouse embryonic development. Dev Biol 146:117–130

    Article  PubMed  CAS  Google Scholar 

  • Pan F, Paul DL, Bloomfield SA, Völgyi B (2010) Connexin36 is required for gap junctional coupling of most ganglion cell subtypes in the mouse retina. J Comp Neurol 518:911–927

    Article  PubMed  PubMed Central  Google Scholar 

  • Penn AA, Wong RO, Shatz CJ (1994) Neuronal coupling in the developing mammalian retina. J Neurosci 14:3805–3815

    PubMed  CAS  Google Scholar 

  • Petrasch-Parwez E, Habbes HW, Weickert S, Löbbecke-Schumacher M, Striedinger K, Wieczorek S, Dermietzel R, Epplen JT (2004) Fine-structural analysis and connexin expression in the retina of a transgenic model of Huntington's disease. J Comp Neurol 479:181–197

    Article  PubMed  CAS  Google Scholar 

  • Raviola E, Gilula NB (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci U S A 70:1677–1681

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rosenbluth J (1965) Smooth muscle: an ultrastructural basis for the dynamics of its contraction. Science 148:1337–1339

    Article  PubMed  CAS  Google Scholar 

  • Schubert T, Degen J, Willecke K, Hormuzdi SG, Monyer H, Weiler R (2005a) Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 485:191–201

    Article  PubMed  CAS  Google Scholar 

  • Schubert T, Maxeiner S, Krüger O, Willecke K, Weiler R (2005b) Connexin45 mediates gap junctional coupling of bistratified ganglion cells in the mouse retina. J Comp Neurol 490:29–39

    Article  PubMed  CAS  Google Scholar 

  • Söhl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    Article  PubMed  Google Scholar 

  • Völgyi B, Pollak E, Buzás P, Gábriel R (1997) Calretinin in neurochemically well-defined cell populations of rabbit retina. Brain Res 763:79–86

    Article  PubMed  Google Scholar 

  • Völgyi B, Deans MR, Paul DL, Bloomfield SA (2004) Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 24:11182–11192

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Abrams J, Paul DL, Bloomfield SA (2005) Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina. J Comp Neurol 492:66–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Chheda S, Bloomfield SA (2009) Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. J Comp Neurol 512:664–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Völgyi B, Kovács-Oller T, Atlasz T, Wilhelm M, Gábriel R (2013a) Gap junctional coupling in the vertebrate retina: variations on one theme? Prog Retin Eye Res 34:1–18

    Article  PubMed  Google Scholar 

  • Völgyi B, Pan F, Paul DL, Wang JT, Huberman AD, Bloomfield SA (2013b) Gap junctions are essential for generating the correlated spike activity of neighboring retinal ganglion cells. PLoS ONE 8:e69426

    Article  PubMed  PubMed Central  Google Scholar 

  • Wässle H, Grünert U, Röhrenbeck J (1993) Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol 332:407–420

    Article  PubMed  Google Scholar 

  • Watanabe A (1958) The interaction of electrical activity among neurons of lobster cardiac ganglion. Jpn J Physiol 8:305–318

    Article  PubMed  CAS  Google Scholar 

  • Weidman TA, Kuwabara T (1968) Postnatal development of the rat retina, an electron microscopic study. Arch Ophth 79:470

    Article  CAS  Google Scholar 

  • Xu Z, Zeng Q, Shi X, He S (2013) Changing coupling pattern of the on–off 3 direction-selective ganglion cells in early postnatal 4 mouse retina. Neuroscience 250:798–808

  • Yamamoto T, Shiosaka S, Whittaker ME, Hertzberg EL, Nagy JI (1989) Gap junction protein in rat hippocampus: light microscope immunohistochemical localization. J Comp Neurol 281:269–281

    Article  PubMed  CAS  Google Scholar 

  • Young RW (1985) Cell proliferation during postnatal development of the retina in the mouse. Brain Res 353:229–239

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Róbert Gábriel, Dr. Viktória Dénes, Mónika Lakk and Zoltán Gödri for their generous help with advice and assistance during the research work. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 ‘National Excellence Program’ and Hungarian Scientific Research Fund – OTKA, K105247 to B.V. and T.K-Ö.

Conflict of interest statement

The authors of this manuscript have no any conflict of interest including any financial, personal or other relationships with other people or organizations that could inappropriately influence the work.

Role of authors

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: B.V.; acquisition of data: T.K-Ö, K.R. and J.O.; analysis and interpretation of data: T.K-Ö., K.R., J.O. and B.V.; drafting of the manuscript: T.K-Ö, K.R., B.V. and M.N.; critical revision of the manuscript for important intellectual content: B.V.; statistical analysis: T.K-Ö and B.V.; obtained funding: B.V.; administrative, technical and material support: B.V. and M.N.; study supervision: B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béla Völgyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács-Öller, T., Raics, K., Orbán, J. et al. Developmental changes in the expression level of connexin36 in the rat retina. Cell Tissue Res 358, 289–302 (2014). https://doi.org/10.1007/s00441-014-1967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1967-9

Keywords

Navigation