Skip to main content

Advertisement

Log in

Endothelial caveolin-1 plays a major role in the development of atherosclerosis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Clinical studies have established the important impact of atherosclerotic disease in Western societies. This disease is characterized by the accumulation of lipids and the migration of various cell types in the sub-endothelial space of blood vessels. As demonstrated by many studies, endothelial cells play an essential role in the development of this disease. The endothelium acts as a gatekeeper of blood vessel integrity and cardiovascular health status. For instance, the transfer of lipids via the transport of lipoproteins in the arterial intima is believed to be mediated by endothelial cells through a process termed transcytosis. In addition, lipoproteins that accumulate in the sub-endothelial space may also be modified, in a process that can direct the activation of endothelial cells. These steps are essential for the initiation of an atherosclerotic plaque and may be mediated, at least in part, by caveolae and their associated protein caveolin-1. In the present study, we evaluate the role of caveolin-1/caveolae in the regulation of these two steps in endothelial cells. Our data clearly demonstrate that caveolin-1 is involved in the regulation of lipoprotein transcytosis across endothelial cells and in the regulation of vascular inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ (1999) Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274:32512–32519

    Article  CAS  PubMed  Google Scholar 

  • Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107:255–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dansky HM, Barlow CB, Lominska C, Sikes JL, Kao C, Weinsaft J, Cybulsky MI, Smith JD (2001) Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 21:1662–1667

    Article  CAS  PubMed  Google Scholar 

  • de Winther MP, Kanters E, Kraal G, Hofker MH (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–914

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Hernando C, Yu J, Davalos A, Prendergast J, Sessa WC (2010) Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 177:998–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Hernando C, Yu J, Suarez Y, Rahner C, Davalos A, Lasuncion MA, Sessa WC (2009) Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab 10:48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP (2004) Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 24:98–105

    Article  CAS  PubMed  Google Scholar 

  • Frank PG, Lisanti MP (2004) Caveolin-1 and caveolae in atherosclerosis: differential roles in fatty streak formation and neointimal hyperplasia. Curr Opin Lipidol 15:523–529

    Article  CAS  PubMed  Google Scholar 

  • Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP (2008) Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 295:C242–C248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank PG, Pavlides S, Lisanti MP (2009) Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 335:41–47

    Article  CAS  PubMed  Google Scholar 

  • Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 23:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Frostegard J, Wu R, Haegerstrand A, Patarroyo M, Lefvert AK, Nilsson J (1993) Mononuclear leukocytes exposed to oxidized low density lipoprotein secrete a factor that stimulates endothelial cells to express adhesion molecules. Atherosclerosis 103:213–219

    Article  CAS  PubMed  Google Scholar 

  • Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27:2292–2301

    Article  CAS  PubMed  Google Scholar 

  • Hassan GS, Jasmin JF, Schubert W, Frank PG, Lisanti MP (2004) Caveolin-1 deficiency stimulates neointima formation during vascular injury. Biochemistry 43:8312–8321

    Article  CAS  PubMed  Google Scholar 

  • Khan BV, Parthasarathy SS, Alexander RW, Medford RM (1995) Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 95:1262–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  • Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Article  CAS  PubMed  Google Scholar 

  • Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minshall RD, Tiruppathi C, Vogel SM, Malik AB (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 117:105–112

    Article  CAS  PubMed  Google Scholar 

  • Monks J, Neville MC (2004) Albumin transcytosis across the epithelium of the lactating mouse mammary gland. J Physiol 560:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851

    Article  CAS  PubMed  Google Scholar 

  • Palade GE, Bruns RR (1968) Structural modification of plasmalemma vesicles. J Cell Biol 37:633–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parat MO (2009) The biology of caveolae: achievements and perspectives. Int Rev Cell Mol Biol 273:117–162

    Article  CAS  PubMed  Google Scholar 

  • Pascariu M, Bendayan M, Ghitescu L (2004) Correlated endothelial caveolin overexpression and increased transcytosis in experimental diabetes. J Histochem Cytochem 52:65–76

    Article  CAS  PubMed  Google Scholar 

  • Pavlides S, Gutierrez-Pajares JL, Danilo C, Lisanti MP, Frank PG (2012) Atherosclerosis, caveolae and caveolin-1. Adv Exp Med Biol 729:127–144

    Article  CAS  PubMed  Google Scholar 

  • Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269:6072–6082

    CAS  PubMed  Google Scholar 

  • Schubert W, Frank PG, Razani B, Park DS, Chow CW, Lisanti MP (2001) Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 276:48619–48622

    Article  CAS  PubMed  Google Scholar 

  • Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP (2002) Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-name, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Yu C, Bernatchez PN (2010) New insights into caveolae, caveolins and endothelial function. Can J Cardiol 26(Suppl A):5A–8A

    Article  CAS  PubMed  Google Scholar 

  • Shaul PW (2003) Endothelial nitric oxide synthase, caveolae and the development of atherosclerosis. J Physiol 547:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274

    Article  CAS  PubMed  Google Scholar 

  • Simionescu M, Popov D, Sima A (2009) Endothelial transcytosis in health and disease. Cell Tissue Res 335:27–40

    Article  PubMed  Google Scholar 

  • Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975

    Article  CAS  PubMed  Google Scholar 

  • Vasile E, Simionescu M, Simionescu N (1983) Visualization of the binding, endocytosis, and transcytosis of low density lipoprotein in the arterial endothelium in situ. J Cell Biol 96:1677–1689

    Article  CAS  PubMed  Google Scholar 

  • Vogel SM, Easington CR, Minshall RD, Niles WD, Tiruppathi C, Hollenberg SM, Parrillo JE, Malik AB (2001) Evidence of transcellular permeability pathway in microvessels. Microvasc Res 61:87–101

    Article  CAS  PubMed  Google Scholar 

  • Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Iset Medina Vera for her technical support. PGF was supported by grants from the Jane Barsumian/Mary Lyons Trust and the W.W. Smith Trust Fund. MPL was supported by grants from the National Institutes of Health and the American Heart Association. The Bioimaging Shared Resource of the Kimmel Cancer Center (NCI 5 P30 CA-56036) was used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlides, S., Gutierrez-Pajares, J.L., Iturrieta, J. et al. Endothelial caveolin-1 plays a major role in the development of atherosclerosis. Cell Tissue Res 356, 147–157 (2014). https://doi.org/10.1007/s00441-013-1767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1767-7

Keywords

Navigation