Skip to main content
Log in

MicroRNA-143 expression in dorsal root ganglion neurons

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The unpleasant sensory and emotional experience of pain is initiated by excitation of primary afferent nociceptive neurons. Nerve damage or inflammation induces changes in nociceptive DRG neurons which contribute to both peripheral and central sensitization of pain-sensitive pathways. Recently, blockade of microRNA synthesis has been found to modulate the response of nociceptive neurons to inflammatory stimuli. However, little is known about the contributions of individual miRNAs to painful conditions. We compared miRNA expression in mouse sensory neurons and focussed on the localisation and control of miR-143. Using miRNA-arrays we compared the microRNA expression profile of intact lumbar DRG with one-day-old DRG cultures and found that nine miRNAs including miR-143 showed lower expression levels in cultures. Subsequent RT-qPCR confirmed array data and in-situ hybridisation localised miR-143 in the cytosol of sensory DRG neurons in situ and in vitro. Analysis of microbead-enriched neuron cultures showed significantly higher expression levels of miR-143 in isolectin B4 (I-B4) binding sensory neurons compared with neurons in the I-B4 negative flow-through fraction. In animal models of peripheral inflammation (injection of Complete Freund’s Adjuvant, CFA) and nerve damage (transection of the sciatic nerve), we found that expression levels of miR-143 were significantly lower in DRGs ipsilateral to CFA injection or after nerve damage. Taken together, our data demonstrate for the first time miR-143 expression in nociceptive neurons. Since expression levels of miR-143 were higher in I-B4 positive neurons and declined in response to inflammation but not axotomy, miR-143 could selectively contribute to mRNA regulation in specific populations of nociceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T (2009) Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 164:711–723

    Article  PubMed  CAS  Google Scholar 

  • Asher RA, Morgenstern DA, Shearer MC, Adcock KH, Pesheva P, Fawcett JW (2002) Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells. J Neurosci 22:2225–2236

    PubMed  CAS  Google Scholar 

  • Bai G, Ambalavanar R, Wei D, Dessem D (2007) Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain 3:15

    Article  PubMed  Google Scholar 

  • Bogen O, Dreger M, Gillen C, Schroder W, Hucho F (2005) Identification of versican as an isolectin B4-binding glycoprotein from mammalian spinal cord tissue. FEBS J 272:1090–1102

    Article  PubMed  CAS  Google Scholar 

  • Braz JM, Basbaum AI (2010) Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli. Pain 150:290–301

    Google Scholar 

  • Costigan M, Befort K, Karchewski L, Griffin RS, D'Urso D, Allchorne A, Sitarski J, Mannion JW, Pratt RE, Woolf CJ (2002) Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 3:16

    Article  PubMed  Google Scholar 

  • Dours-Zimmermann MT, Maurer K, Rauch U, Stoffel W, Fassler R, Zimmermann DR (2009) Versican V2 assembles the extracellular matrix surrounding the nodes of ranvier in the CNS. J Neurosci 29:7731–7742

    Article  PubMed  CAS  Google Scholar 

  • Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka T, Tokunaga A, Kondo E, Miki K, Tachibana T, Noguchi K (1998) Change in mRNAs for neuropeptides and the GABA(A) receptor in dorsal root ganglion neurons in a rat experimental neuropathic pain model. Pain 78:13–26

    Article  PubMed  CAS  Google Scholar 

  • Gu WL, Fu SL, Wang YX, Li Y, Wang XF, Xu XM, Lu PH (2007) Expression and regulation of versican in neural precursor cells and their lineages. Acta Pharmacol Sin 28:1519–1530

    Article  PubMed  CAS  Google Scholar 

  • Hebert SS, De Strooper B (2007) Molecular biology. miRNAs in neurodegeneration. Science 317:1179–1180

    Article  PubMed  Google Scholar 

  • Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H (2007) Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiol Genomics 29:215–230

    PubMed  CAS  Google Scholar 

  • Kress M, Guenther S (1999) Role of [Ca2+]i in the ATP-induced heat sensitization process of rat nociceptive neurons. J Neurophysiol 81:2612–2619

    PubMed  CAS  Google Scholar 

  • Lau P, Hudson LD (2010) MicroRNAs in neural cell differentiation. Brain Res 1338:14–19

    Article  PubMed  CAS  Google Scholar 

  • Li X, Jin P (2010) Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 11:329–338

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Zhao X, Zhong LJ, Yang HY, Wang Q, Pu XP (2009) Effects of chronic morphine treatment on protein expression in rat dorsal root ganglia. Eur J Pharmacol 612:21–28

    Article  PubMed  CAS  Google Scholar 

  • Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2:1508–1514

    Article  PubMed  CAS  Google Scholar 

  • Persson AK, Gebauer M, Jordan S, Metz-Weidmann C, Schulte AM, Schneider HC, Ding-Pfennigdorff D, Thun J, Xu XJ, Wiesenfeld-Hallin Z, Darvasi A, Fried K, Devor M (2009) Correlational analysis for identifying genes whose regulation contributes to chronic neuropathic pain. Mol Pain 5:7

    Article  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  Google Scholar 

  • Rigaud M, Gemes G, Barabas ME, Chernoff DI, Abram SE, Stucky CL, Hogan QH (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136:188–201

    Article  PubMed  Google Scholar 

  • Schratt G (2009) Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol 19:213–219

    Article  PubMed  CAS  Google Scholar 

  • Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881–886

    Article  PubMed  CAS  Google Scholar 

  • Smith ES, Lewin GR (2009) Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:1089–1106

    Article  PubMed  CAS  Google Scholar 

  • Tao YX, Rumbaugh G, Wang GD, Petralia RS, Zhao C, Kauer FW, Tao F, Zhuo M, Wenthold RJ, Raja SN, Huganir RL, Bredt DS, Johns RA (2003) Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci 23:6703–6712

    PubMed  CAS  Google Scholar 

  • Vallotton P, Lagerstrom R, Sun C, Buckley M, Wang D, De Silva M, Tan SS, Gunnersen JM (2007) Automated analysis of neurite branching in cultured cortical neurons using HCA-Vision. Cytometry A 71:889–895

    PubMed  Google Scholar 

  • Wang G, Mao W, Zheng S (2008) MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett 582:3663–3668

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Hu G, Zhou J (2010) Repression of versican expression by microRNA-143. J Biol Chem 285:23241–23250

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Ma Q (2007) Nociceptors–noxious stimulus detectors. Neuron 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • Yamagata T, Yoshizawa J, Ohashi S, Yanaga K, Ohki T (2010) Expression patterns of microRNAs are altered in hypoxic human neuroblastoma cells. Pediatr Surg Int 26:1179–1184

    Google Scholar 

  • Zhang X, Xiao HS (2005) Gene array analysis to determine the components of neuropathic pain signaling. Curr Opin Mol Ther 7:532–537

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wang YH, Zhang XH, Ge HY, Arendt-Nielsen L, Shao JM, Yue SW (2008) Proteomic analysis of differential proteins related to the neuropathic pain and neuroprotection in the dorsal root ganglion following its chronic compression in rats. Exp Brain Res 189:199–209

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, Nassar MA, Abrahamsen B, Dickenson A, Cobb BS, Merkenschlager M, Wood JN (2010) Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30:10860–10871

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Haberberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam Tam, S., Bastian, I., Zhou, X.F. et al. MicroRNA-143 expression in dorsal root ganglion neurons. Cell Tissue Res 346, 163–173 (2011). https://doi.org/10.1007/s00441-011-1263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1263-x

Keywords

Navigation