Skip to main content

Advertisement

Log in

Expression and immunohistochemical localization of TMEM16A/anoctamin 1, a calcium-activated chloride channel in the mouse cochlea

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Sound transduction in the cochlea depends on the unique high concentrations of K+ in the endolymph. The production and maintenance of high K+ concentrations are accompanied by Cl- cycling. In this study, we report on an investigation of the expression and localization of TMEM16A/anoctamin 1 (ANO1), a recently cloned Ca2+-activated Cl- channel, in the mouse cochlea by Western blot and immunhistochemistry. The ANO1 protein was identified in the cochlea by Western blotting. The immunoreactivity was found in stria vascularis as a line and in the organ of Corti as three plaques. The cellular localization of ANO1 was examined by means of double-labeling experiments with anti-claudin 11, a marker for basal cells of the stria vascularis. The results demonstrated that ANO1 colocalized with claudin 11, indicating its expression in basal cells. We also examined ANO1 localization in the organ of Corti by double- and triple-labeling techniques with anti-myosin VI, a marker for hair cells, and anti-synaptophysin, a marker for olivocochlear efferent nerve endings under hair cells. The results clearly showed that ANO1 is colocalized with synaptophysin, but not with myosin VI, indicating that ANO1 is localized at medial olivocochlear efferent nerve endings under outer hair cells. These results suggest that ANO1 may be specifically involved in synaptic transmission from medial olivocochlear efferent nerve endings to outer hair cells in the organ of Corti, as well as Cl- cycling in basal cells of the stria vascularis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aschoff A, Ostwald J (1987) Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol 264:56–72

    Article  PubMed  CAS  Google Scholar 

  • Bartolome MV, Zuluaga P, Carricondo F, Gil-Loyzaga P (2009) Immunocytochemical detection of synaptophysin in C57BL/6 mice cochlea during aging process. Brain Res Rev 60:341–348

    Article  PubMed  CAS  Google Scholar 

  • Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    Article  PubMed  CAS  Google Scholar 

  • Darrow KN, Maison SF, Liberman MC (2006) Cochlear efferent feedback balances interaural sensitivity. Nat Neurosci 9:1474–1476

    Article  PubMed  CAS  Google Scholar 

  • Duran C, Thompson CH, Xiao Q, Hartzell HC (2010) Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95–121

    Article  PubMed  CAS  Google Scholar 

  • Frings S, Reuter D, Kleene SJ (2000) Neuronal Ca2+ -activated Cl- channels - homing in on an elusive channel species. Prog Neurobiol 60:247–289

    Article  PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Pujol R (1988) Synaptophysin in the developing cochlea. Int J Dev Neurosci 6:155–160

    Article  PubMed  CAS  Google Scholar 

  • Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B (2004) Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24:7051–7062

    Article  PubMed  CAS  Google Scholar 

  • Günzel D, Haisch L, Pfaffenbach S, Krug SM, Milatz S, Amasheh S, Hunziker W, Müller D (2009) Claudin function in the thick ascending limb of Henle's loop. Ann N Y Acad Sci 1165:152–162

    Article  PubMed  Google Scholar 

  • Hara A, Salt AN, Thalmann R (1989) Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid. Hear Res 42:265–271

    Article  PubMed  CAS  Google Scholar 

  • Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  PubMed  CAS  Google Scholar 

  • Hasson T, Mooseker MS (1994) Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol 127:425–440

    Article  PubMed  CAS  Google Scholar 

  • Hibino H, Kurachi Y (2006) Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda) 21:336–345

    CAS  Google Scholar 

  • Hibino H, Horio Y, Inanobe A, Doi K, Ito M, Yamada M, Gotow T, Uchiyama Y, Kawamura M, Kubo T, Kurachi Y (1997) An ATP-dependent inwardly rectifying potassium channel, KAB-2 (Kir4. 1), in cochlear stria vascularis of inner ear: its specific subcellular localization and correlation with the formation of endocochlear potential. J Neurosci 17:4711–4721

    PubMed  CAS  Google Scholar 

  • Hibino H, Nin F, Tsuzuki C, Kurachi Y (2010) How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch 459:521–533

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Renigunta A, Yang J, Waldegger S (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci USA 107:18010–18015

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci USA 106:21413–21418

    Article  PubMed  CAS  Google Scholar 

  • Hussy N (1992) Calcium-activated chloride channels in cultured embryonic Xenopus spinal neurons. J Neurophysiol 68:2042–2050

    PubMed  CAS  Google Scholar 

  • Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S (2004a) Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117:5087–5096

    Article  PubMed  CAS  Google Scholar 

  • Kitajiri SI, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, Tsukita S (2004b) Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res 187:25–34

    Article  PubMed  CAS  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446

    Article  PubMed  CAS  Google Scholar 

  • Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20:4701–4707

    PubMed  CAS  Google Scholar 

  • Maison SF, Adams JC, Liberman MC (2003) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J Comp Neurol 455:406–416

    Article  PubMed  CAS  Google Scholar 

  • Marcus DC, Wangemann P (2009) Cochlear and vestibular function and dysfunction. In: Alvarez-Leefmans FJ, Delpire E (eds) Physiology and pathology of chloride transporters and channels in the nervous system - from molecules to disease. Elsevier, Oxford, pp 421–433

    Google Scholar 

  • Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Fauré S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189

    Article  PubMed  CAS  Google Scholar 

  • Qu C, Liang F, Hu W, Shen Z, Spicer SS, Schulte BA (2006) Expression of CLC-K chloride channels in the rat cochlea. Hear Res 213:79–87

    Article  PubMed  CAS  Google Scholar 

  • Rickheit G, Maier H, Strenzke N, Andreescu CE, De Zeeuw CI, Muenscher A, Zdebik AA, Jentsch TJ (2008) Endocochlear potential depends on Cl- channels: mechanism underlying deafness in Bartter syndrome IV. EMBO J 27:2907–2917

    Article  PubMed  CAS  Google Scholar 

  • Romanenko VG, Catalán MA, Brown DA, Putzier I, Hartzell HC, Marmorstein AD, Gonzalez-Begne M, Rock JR, Harfe BD, Melvin JE (2010) Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells. J Biol Chem 285:12990–13001

    Article  PubMed  CAS  Google Scholar 

  • Sage CL, Marcus DC (2001) Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells. Hear Res 160:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N, Takumi T, Ohkubo H, Nakanishi S (1991) Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168–172

    Article  PubMed  CAS  Google Scholar 

  • Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • Simmons DD, Moulding HD, Zee D (1996) Olivocochlear innervation of inner and outer hair cells during postnatal maturation: an immunocytochemical study. Brain Res Dev Brain Res 95:213–226

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Lowry OH, Wu ML (1954) The electrolytes of the labyrinthine fluids. Laryngoscope 64:141–153

    PubMed  CAS  Google Scholar 

  • Stöhr H, Heisig JB, Benz PM, Schöberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29:6809–6818

    Article  PubMed  Google Scholar 

  • Sugasawa M, Erostegui C, Blanchet C, Dulon D (1996) ATP activates a cation conductance and Ca2+-dependent Cl- conductance in Hensen cells of guinea pig cochlea. Am J Physiol 271:C1817–C1827

    PubMed  CAS  Google Scholar 

  • Sunose H, Ikeda K, Saito Y, Nishiyama A, Takasaka T (1993) Nonselective cation and Cl channels in luminal membrane of the marginal cell. Am J Physiol 265:C72–C78

    PubMed  CAS  Google Scholar 

  • Takeuchi S, Marcus DC, Wangemann P (1992) Ca2+-activated nonselective cation, maxi K+ and Cl- channels in apical membrane of marginal cells of stria vascularis. Hear Res 61:86–96

    Article  PubMed  CAS  Google Scholar 

  • Wang BL, Larsson LI (1985) Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining. Novel light and electron microscopical double and triple staining method employing primary antibodies from the same species. Histochemistry 83:47–56

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J, Marcus DC (1995) Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19–29

    Article  PubMed  CAS  Google Scholar 

  • Warr BW (1992) Organization of olivocochlear efferent systems in mammals. Springer, New York, pp 410–428

    Google Scholar 

  • Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316

    CAS  Google Scholar 

Download references

Acknowledgement

We wish to thank Prof. Jinwoong Bok (Yonsei University) for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Won Yeo or In-Beom Kim.

Additional information

Ji Hyun Jeon and Jae Woo Park contributed equally to this work.

This study was supported by Basic Science Research Program (2010–0022317) and Medical Research Center Grant (R13-2002-005-01002-0) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, J.H., Park, J.W., Lee, J.W. et al. Expression and immunohistochemical localization of TMEM16A/anoctamin 1, a calcium-activated chloride channel in the mouse cochlea. Cell Tissue Res 345, 223–230 (2011). https://doi.org/10.1007/s00441-011-1206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1206-6

Keywords

Navigation