Skip to main content
Log in

Aging of cerebellar Purkinje cells

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cerebellar Purkinje cells (PCs), the sole output neurons in the cerebellar cortex, play an important role in the cerebellar circuit. PCs appear to be rather sensitive to aging, exhibiting significant changes in both morphology and function during senescence. This article reviews such changes during the normal aging process, including a decrease in the quantity of cells, atrophy in the soma, retraction in the dendritic arborizations, degeneration in the subcellular organelles, a decline in synapse density, disorder in the neurotransmitter system, and alterations in electrophysiological properties. Although these deteriorative changes occur during aging, compensatory mechanisms exist to counteract the impairments in the aging PCs. The possible neural mechanisms underlying these changes and potential preventive treatments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcock J, Scotting P, Sottile V (2007) Bergmann glia as putative stem cells of the mature cerebellum. Med Hypotheses 69:341–345

    Article  CAS  PubMed  Google Scholar 

  • Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466:356–365

    Article  PubMed  Google Scholar 

  • Atamna H (2004) Heme, iron, and the mitochondrial decay of ageing. Ageing Res Rev 3:303–318

    Article  CAS  PubMed  Google Scholar 

  • Bakalian A, Corman B, Delhaye-Bouchaud N, Mariani J (1991) Quantitative analysis of the Purkinje cell population during extreme ageing in the cerebellum of the Wistar/Louvain rat. Neurobiol Aging 12:425–430

    Article  CAS  PubMed  Google Scholar 

  • Bertoni-Freddari C, Giuli C, Pieri C, Paci D (1986) Age-related morphological rearrangements of synaptic junctions in the rat cerebellum and hippocampus. Arch Gerontol Geriatr 5:297–304

    Article  CAS  PubMed  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Paoloni R, Caselli U, Galeazzi L, Meier-Ruge W (1996) Synaptic structural dynamics and aging. Gerontology 42:170–180

    Article  CAS  PubMed  Google Scholar 

  • Bickford P (1993) Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res 620:133–138

    Article  CAS  PubMed  Google Scholar 

  • Bickford PC, Hoffer BJ, Freedman R (1985) Interaction of norepinephrine with Purkinje cell responses to cerebellar afferent inputs in aged rats. Neurobiol Aging 6:89–94

    Article  CAS  PubMed  Google Scholar 

  • Bickford PC, Shukitt-Hale B, Joseph J (1999) Effects of aging on cerebellar noradrenergic function and motor learning: nutritional interventions. Mech Ageing Dev 111:141–154

    Article  CAS  PubMed  Google Scholar 

  • Bickford-Wimer PC, Granholm AC, Gerhardt GA (1988) Cerebellar noradrenergic systems in aging: studies in situ and in in oculo grafts. Neurobiol Aging 9:591–599

    Article  CAS  PubMed  Google Scholar 

  • Binder DK (2007) Neurotrophins in the dentate gyrus. Prog Brain Res 163:371–397

    Article  CAS  PubMed  Google Scholar 

  • Binstock RH, Fishman JR, Juengst ET (2006) Boundaries and labels: anti-aging medicine and science. Rejuvenation Res 9:433–435

    Article  PubMed  Google Scholar 

  • Caston J, Hilber P, Chianale C, Mariani J (2003) Effect of training on motor abilities of heterozygous staggerer mutant (Rora(+)/Rora(sg)) mice during aging. Behav Brain Res 141:35–42

    Article  CAS  PubMed  Google Scholar 

  • Caston J, Chianale C, Mariani J (2004) Spatial memory of heterozygous staggerer (Rora(+)/Rora(sg)) versus normal (Rora(+)/Rora(+)) mice during aging. Behav Genet 34:319–324

    Article  CAS  PubMed  Google Scholar 

  • Chae CH, Kim HT (2009) Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochem Int 55:208–213

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Hillman DE (1999) Dying-back of Purkinje cell dendrites with synapse loss in aging rats. J Neurocytol 28:187–196

    Article  CAS  PubMed  Google Scholar 

  • Chintala S, Novak EK, Spernyak JA, Mazurchuk R, Torres G, Patel S, Busch K, Meeder BA, Horowitz JM, Vaughan MM, Swank RT (2009) The Vps33a gene regulates behavior and cerebellar Purkinje cell number. Brain Res 1266:18–28

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Shin C, Park KH, Cha CI (2000) Immunohistochemical study on the distribution of neuronal voltage-gated calcium channels in the rat cerebellum. Brain Res 865:278–282

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Shin CM, Kim MJ, Lee BK, Cha CI (2001a) Age-related changes in the distribution of Kv1.1, Kv1.2 channel subunits in the rat cerebellum. Brain Res 897:193–198

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Shin CM, Kim MJ, Shin DH, Yoo YB, Cha CI (2001b) Differential alterations in the distribution of voltage-gated calcium channels in aged rat cerebellum. Brain Res 903:247–252

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Shin CM, Joo KM, Kim MJ, Cha CI (2002) Age-related upregulation of insulin-like growth factor receptor type I in rat cerebellum. Neurosci Lett 330:65–68

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Joo KM, Kim MJ, Cha CI (2003) Age-related changes in the distribution of Na(v)1.1 and Na(v)1.2 in rat cerebellum. NeuroReport 14:841–845

    Article  CAS  PubMed  Google Scholar 

  • Dhar P, Mohari N, Mehra RD (2007) Preliminary morphological and morphometric study of rat cerebellum following sodium arsenite exposure during rapid brain growth (RBG) period. Toxicology 234:10–20

    Article  CAS  PubMed  Google Scholar 

  • Dlugos C (2005) Analyses of smooth endoplasmic reticulum of cerebellar parallel fibers in aging, ethanol-fed rats. Alcohol 35:67–73

    Article  CAS  PubMed  Google Scholar 

  • Dlugos CA, Pentney RJ (1994) Morphometric analyses of Purkinje and granule cells in aging F344 rats. Neurobiol Aging 15:435–440

    Article  CAS  PubMed  Google Scholar 

  • Drüge H, Heinsen H, Heinsen YL (1986) Quantitative studies in ageing Chbb: THOM (Wistar) rats. II. Neuron numbers in lobules I, VIb+c and X. Bibl Anat 28:121–137

    PubMed  Google Scholar 

  • Erickson KI, Prakash RS, Voss MW, Chaddock L, Heo S, McLaren M, Pence BD, Martin SA, Vieira VJ, Woods JA, McAuley E, Kramer AF (2010) Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci 30:5368–5375

    Article  CAS  PubMed  Google Scholar 

  • Fattoretti P, Bertoni-Freddari C, Caselli U, Paoloni R, Meier-Ruge W (1996) Morphologic changes in cerebellar mitochondria during aging. Anal Quant Cytol Histol 18:205–208

    CAS  PubMed  Google Scholar 

  • Fattoretti P, Bertoni-Freddari C, Caselli U, Paoloni R, Meier-Ruge W (1998) Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging. Mech Ageing Dev 101:175–182

    Article  CAS  PubMed  Google Scholar 

  • Felici L, Bronzetti E, Amenta F (1989) Enzyme histochemistry of glutamate dehydrogenase in ageing rat cerebellar cortex. Mech Ageing Dev 47:199–205

    Article  CAS  PubMed  Google Scholar 

  • George O, Vallée M, Le Moal M, Mayo W (2006) Neurosteroids and cholinergic systems: implications for sleep and cognitive processes and potential role of age-related changes. Psychopharmacology 186:402–413

    Article  CAS  PubMed  Google Scholar 

  • Glick R, Bondareff W (1979) Loss of synapses in the cerebellar cortex of the senescent rat. J Gerontol 34:818–822

    CAS  PubMed  Google Scholar 

  • Gorbunova V, Seluanov A, Mao Z, Hine C (2007) Changes in DNA repair during aging. Nucleic Acids Res 35:7466–7474

    Article  CAS  PubMed  Google Scholar 

  • Goukassian DA, Bagheri S, Keeb L, Eller MS, Gilchrest BA (2002) DNA oligonucleotide treatment corrects the age-associated decline in DNA repair capacity. FASEB J 16:754–756

    CAS  PubMed  Google Scholar 

  • Gruart A, Muñoz MD, Delgado-García JM (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Hadj-Sahraoui N, Frederic F, Zanjani H, Delhaye-Bouchaud N, Herrup K, Mariani J (2001) Progressive atrophy of cerebellar PC dendrites during aging of the heterozygous staggerer mouse (Rora+/sg). Dev Brain Res 126:201–209

    Article  CAS  Google Scholar 

  • Hall TC, Millerakh Corsellis JAN (1975) Variations in the human Purkinje cell population according to age and sex. Neuropathol Appl Neurobiol 1:267–292

    Article  Google Scholar 

  • Hilber P, Caston J (2001) Motor skills and motor learning in Lurcher mutant mice during aging. Neuroscience 102:615–623

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RC (2009) Polysaccharides from Wolfberry Antagonizes Glutamate Excitotoxicity in Rat Cortical Neurons. Cell Mol Neurobiol 29:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Hogan MJ (2004) The cerebellum in thought and action: a fronto-cerebellar aging hypothesis. New Ideas in Psychol 22:97–125

    Article  Google Scholar 

  • Hua T, Kao C, Sun Q, Li X, Zhou Y (2008) Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res Bull 75:119–125

    Article  CAS  PubMed  Google Scholar 

  • Huang CM, Brown N, Huang RH (1999) Age-related changes in the cerebellum: parallel fibers. Brain Res 840:148–152

    Article  CAS  PubMed  Google Scholar 

  • Huang CM, Miyamoto H, Huang RH (2006a) The mouse cerebellum from 1 to 34 months: parallel fibers. Neurobiol Aging 27:1715–1718

    Article  PubMed  Google Scholar 

  • Huang CM, Wang L, Huang RH (2006b) Cerebellar granule cell: ascending axon and parallel fiber. Eur J Neurosci 23:1731–1737

    Article  PubMed  Google Scholar 

  • Jankovski A, Rossi F, Sotelo C (1996) Neuronal precursors in the postnatal mouse cerebellum are fully committed cells: evidence from heterochronic transplantations. Eur J Neurosci 8:2308–2319

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Galvan V (2007) Endogenous neural stem cells in the adult brain. J Neuroimmune Pharmacol 2:236–242

    Article  PubMed  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, Taglialatela G, Bickford PC (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18:8047–8055

    CAS  PubMed  Google Scholar 

  • Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G (2005) Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development 132:4497–4508

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Itsukaichi-Nishida Y, Fukazawa Y, Wakamori M, Miyata M, Molnar E, Mori Y, Shigemoto R, Imoto K (2006) A CaV2.1 calcium channel mutation rocker reduces the number of postsynaptic AMPA receptors in parallel fiber–Purkinje cell synapses. Eur J Neurosci 24:2993–3007

    Article  PubMed  Google Scholar 

  • Lärkfors L, Lindsay RM, Alderson RF (1994) Ciliary neurotrophic factor enhances the survival of Purkinje cells in vitro. Eur J Neurosci 6:1015–1025

    Article  PubMed  Google Scholar 

  • Larsen JO, Skalicky M, Viidik A (2000) Does long-term physical exercise counteract age-related Purkinje cell loss? A stereological study of rat cerebellum. Comp Neurol 428:213–222

    Article  CAS  Google Scholar 

  • Lee JY, Lyoo IK, Kim SU, Jang HS, Lee DW, Jeon HJ, Park SC, Cho MJ (2005) Intellect declines in healthy elderly subjects and cerebellum. Psychiatry Clin Neurosci 59:45–51

    Article  PubMed  Google Scholar 

  • Lee KJ, Jung JG, Arii T, Imoto K, Rhyu IJ (2007) Morphological changes in dendritic spines of Purkinje cells associated with motor learning. Neurobiol Learn Mem 88:445–450

    Article  PubMed  Google Scholar 

  • Louis ED, Faust PL, Vonsattel JP, Honig LS, Henchcliffe C, Pahwa R, Lyons KE, Rios E, Erickson-Davis C, Moskowitz CB, Lawton A (2009) Older onset essential tremor: more rapid progression and more degenerative pathology. Mov Disord 24:1606–1612

    Article  PubMed  Google Scholar 

  • Manev H, Uz T, Sugaya K, Qu T (2000) Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J 14:1464–1469

    Article  CAS  PubMed  Google Scholar 

  • Markowska AL, Mooney M, Sonntag WE (1998) Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87:559–569

    Article  CAS  PubMed  Google Scholar 

  • Martinez Gagliardo K, Clebis NK, Stabille SR, De Britto MR, De Sousa JM, De Souza RR (2008) Exercise reduces inhibitory neuroactivity and protects myenteric neurons from age-related neurodegeneration. Auton Neurosci 141:31–37

    Article  CAS  PubMed  Google Scholar 

  • Marwaha J, Hoffer B, Pittman R, Freedman R (1980) Age-related electrophysiological changes in rat cerebellum. Brain Res 201:85–97

    Article  CAS  PubMed  Google Scholar 

  • Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, Weinberger DR (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58:630–635

    CAS  PubMed  Google Scholar 

  • Monteiro RA (1991) Age-related quantitative changes in the organelles of rat neocerebellar Purkinje cells. Histol Histopathol 6:9–20

    CAS  PubMed  Google Scholar 

  • Monteiro RA, Rocha E, Marini-Abreu MM (1992) Age-related quantitative changes in inhibitory axo-somatic synapses on Purkinje cells of rat neocerebellum (Crus I and Crus II). J Submicrosc Cytol Pathol 24:351–357

    CAS  PubMed  Google Scholar 

  • Monteiro RA, Rocha E, Marini-Abreu MM (1994) Heterogeneity and death of Purkinje cells of rat neocerebellum (Crus I and Crus II): hypothetic mechanisms based on qualitative and quantitative microscopical data. J Hirnforsch 35:205–222

    CAS  PubMed  Google Scholar 

  • Monteiro RA, Henrique RM, Rocha E, Silva MW, Oliveira MH (2000) Quantitative age-changes in endoplasmic reticulum and nucleus of cerebellar granule cells. Neurobiol Aging 21:97–105

    Article  CAS  PubMed  Google Scholar 

  • Niblock MM, Brunso-Bechtold JK, Riddle DR (2000) Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20:4165–4176

    CAS  PubMed  Google Scholar 

  • Nosal G (1979) Neuronal involution during ageing. Ultrastructural study in the rat cerebellum. Mech Ageing Dev 10:295–314

    Article  CAS  PubMed  Google Scholar 

  • Ogata R, Ikari K, Hayashi M, Tamai K, Tagawa K (1984) Age-related changes in the Purkinje's cells in the rat cerebellar cortex: a quantitative electron microscopic study. Folia Psychiatr Neurol Jpn 38:159–167

    CAS  PubMed  Google Scholar 

  • Ohyama H, Hiramatsu M, Ogawa N, Mori A (1995) Age-related differences in synaptosomal membrane fluidity. Biochem Mol Biol Int 37:133–140

    CAS  PubMed  Google Scholar 

  • Ojaimi J, Masters CL, Opeskin K, McKelvie P, Byrne E (1999) Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev 111:39–47

    Article  CAS  PubMed  Google Scholar 

  • Parfitt KD (1988) Age-related electrophysiological changes in cerebellar noradrenergic receptors. Age 11:120–127

    Article  CAS  Google Scholar 

  • Patrick GW, Anderson WJ (2000) Dendritic alterations of cerebellar Purkinje neurons in postnatally lead-exposed kittens. Dev Neurosci 22:320–328

    Article  CAS  PubMed  Google Scholar 

  • Paul R, Grieve SM, Chaudary B, Gordon N, Lawrence J, Cooper N, Clark CR, Kukla M, Mulligan R, Gordon E (2009) Relative contributions of the cerebellar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiol Aging 30:457–465

    Article  PubMed  Google Scholar 

  • Pentney RJ, Mullan BA, Felong AM, Dlugos CA (2002) The total numbers of cerebellar granule neurons in young and aged Fischer 344 and Wistar–Kyoto rats do not change as a result of lengthy ethanol treatment. Cerebellum 1:79–89

    Article  CAS  PubMed  Google Scholar 

  • Pires RS, Real CC, Folador TS, Tellini NR, Torrão AS, Britto LR (2010) Differential response of AMPA and NMDA glutamate receptors of Purkinje cells to aging of the chicken cerebellum. Neurosci Lett 478:146–149

    Google Scholar 

  • Poe BH, Linville C, Brunso-Bechtold J (2001) Age-related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector. J Comp Neurol 439:65–72

    Article  CAS  PubMed  Google Scholar 

  • Porras-García E, Cendelin J, Domínguez-del-Toro E, Vozeh F, Delgado-García JM (2005) Purkinje cell loss affects differentially the execution, acquisition and prepulse inhibition of skeletal and facial motor responses in Lurcher mice. Eur J Neurosci 21:979–988

    Article  PubMed  Google Scholar 

  • Porras-García E, Sánchez-Campusano R, Matínez-Vargas D, Domínguez-Del-Toro E, Cendelín J, Vozeh F, Delgado-Garcia JM (2010) Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol 104:346–365

    Google Scholar 

  • Quackenbush LJ, Ngo H, Pentney RJ (1990) Evidence for nonrandom regression of dendrites of Purkinje neurons during aging. Neurobiol Aging 11:111–115

    Article  CAS  PubMed  Google Scholar 

  • Rao SM, Mattson PM (2001) Stem cells and aging: expanding the possibilities. Mech Ageing Dev 122:713–734

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Zornetzer SF, Bloom FE (1981) Senescent pathology of cerebellum: Purkinje neurons and their parallel fiber afferents. Neurobiol Aging 2:15–25

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, Zornetzer SF, Bloom FE, Mervis RE (1984) Senescent microstructural changes in rat cerebellum. Brain Res 292:23–32

    Article  CAS  PubMed  Google Scholar 

  • Sabbatini M, Barili P, Bronzetti E, Zaccheo D, Amenta F (1999) Age-related changes of glial fibrillary acidic protein immunoreactive astrocytes in the rat cerebellar cortex. Mech Ageing Dev 108:165–172

    Article  CAS  PubMed  Google Scholar 

  • Schaller KL, Caldwell JH (2003) Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum 2:2–9

    Article  CAS  PubMed  Google Scholar 

  • Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJ, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi RC, Parducz A, Suter U, Carelli C, Baulieu EE, Akwa Y (2003) Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 71:3–29

    Article  CAS  PubMed  Google Scholar 

  • Seo MY, Chung SY, Choi WK, Seo YK, Jung SH, Park JM, Seo MJ, Park JK, Kim JW, Park CS (2009) Anti-aging effect of rice wine in cultured human fibroblasts and keratinocytes. J Biosci Bioeng 107:266–271

    Article  CAS  PubMed  Google Scholar 

  • Servais L, Hourez R, Bearzatto B, Gall D, Schiffmann SN, Cheron G (2007) Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome. Proc Natl Acad Sci USA 104:9858–9863

    Article  CAS  PubMed  Google Scholar 

  • Sjöbeck M, Englund E (2001) Alzheimer's disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord 12:211–218

    Article  PubMed  Google Scholar 

  • Sun Y, Jin K, Mao XO, Xie L, Peel A, Childs JT, Logvinova A, Wang X, Greenberg DA (2005) Effect of aging on neuroglobin expression in rodent brain. Neurobiol Aging 26:275–278

    Article  CAS  PubMed  Google Scholar 

  • Takahashi E, Niimi K, Itakura C (2009) Motor coordination impairment in aged heterozygous rolling Nagoya, Cav2.1 mutant mice. Brain Res 1279:50–57

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki T, Okayama A, Yoshiura T, Togao O, Nakamura Y, Yamasaki T, Ogata K, Shigeto H, Ohyagi Y, Kira J, Tobimatsu S (2007) Age-related alterations of the functional interactions within the basal ganglia and cerebellar motor loops in vivo. Neuroimage 36:1263–1276

    Article  PubMed  Google Scholar 

  • Tolbert DL, Clark BR (2003) GDNF and IGF-I trophic factors delay hereditary Purkinje cell degeneration and the progression of gait ataxia. Exp Neurol 183:205–219

    Article  CAS  PubMed  Google Scholar 

  • Tranquilli Leali FM, Artico M, Potenza S, Cavallotti C (2003) Age-related changes of monoaminooxidases in rat cerebellar cortex. Eur J Histochem 47:81–86

    CAS  PubMed  Google Scholar 

  • Tu PH, Robinson KA, de Snoo F, Eyer J, Peterson A, Lee VM, Trojanowski JQ (1997) Selective degeneration of Purkinje cells with Lewy body-like inclusions in aged NFHLACZ transgenic mice. J Neurosci 17:1064–1074

    CAS  PubMed  Google Scholar 

  • von Bohlen und Halbach O, Unsicker K (2002) Morphological alterations in the amygdala and hippocampus of mice during ageing. Eur J Neurosci 16:2434–2440

    Article  PubMed  Google Scholar 

  • Woodruff-Pak DS (2006) Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to associative learning. Neuroscience 141:233–243

    Article  CAS  PubMed  Google Scholar 

  • Woodruff-Pak DS, Vogel RW 3rd, Ewers M, Coffey J, Boyko OB, Lemieux SK (2001) MRI-assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem 76:342–357

    Article  CAS  PubMed  Google Scholar 

  • Woodruff-Pak DS, Foy MR, Akopian GG, Lee KH, Zach J, Nguyen KP, Comalli DM, Kennard JA, Agelan A, Thompson RF (2010) Differential effects and rates of normal aging in cerebellum and hippocampus. Proc Natl Acad Sci USA 107:1624–1629

    Article  CAS  PubMed  Google Scholar 

  • Zhang CZ, Hua TM, Zhu ZM, Luo X (2006) Age-related changes of structures in cerebellar cortex of cat. J Biosci 31:55–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of Anhui Provincial Education Bureau (No. KJ2007B330ZC) and the Key Natural Science Foundation of Anhui Provincial Education Bureau (No. KJ2009A167).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changzheng Zhang or Tianmiao Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Zhu, Q. & Hua, T. Aging of cerebellar Purkinje cells. Cell Tissue Res 341, 341–347 (2010). https://doi.org/10.1007/s00441-010-1016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1016-2

Keywords

Navigation