Skip to main content

Advertisement

Log in

Immune cell types involved in early uptake and transport of recombinant mouse prion protein in Peyer’s patches of calves

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have previously reported the early uptake and transport of foreign particles into Peyer’s patches (PPs) of newborn and 2-month-old calves and shown that the peak uptake of particles occurs 6 h after inoculation, in addition to site- and size-related effects on particle uptake. We now report the distribution of immune cells within PPs of the distal ileum in newborn and 2-month-old calves inoculated with carbon black. The types of immune cells involved in the early uptake and transport of recombinant mouse prion protein (rMPrP) within PPs of newborn calf were investigated by using monoclonal antibodies CD11c, CD14, CD68, CD172a, and CD21. CD11c+, CD14+, CD68+, CD172a+, and CD21+ immune cells were widely distributed in four tissue compartments (villi, dome, interfollicular region, and follicles) of PPs in the distal ileum of newborn and 2-month-old calves, whereas CD11c+, CD14+, CD172a+, and CD21+ immune cells were more prominently distributed in the dome areas of newborn calves than in 2-month-old calves. Moreover, CD11c+ and CD14+ dendritic cells, CD172a+ and CD68+ macrophages, and CD21+ follicular dendritic cells containing rMPrP were primarily observed in the dome and inner follicular regions. The deposition of rMPrP within CD11c+, CD14+, CD172a+, and CD68+ cells, but not CD21+ cells, was detected in villous regions. rMPrP-positive immune cells within the interfollicular regions included only CD11c+ and CD172+ cells. Although the particles used in this investigation do not include the infectious prion protein, PrPSc, our experimental setup provides a useful model for studying immune cells involved in the early uptake and transport of PrPSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akesson CP, McL Press C, Espenes A, Aleksandersen M (2008) Phenotypic characterisation of intestinal dendritic cells in sheep. Dev Comp Immunol 32:837–849

    PubMed  Google Scholar 

  • Arnold ME, Wilesmith JW (2004) Estimation of the age-dependent risk of infection to BSE of dairy cattle in Great Britain. Prev Vet Med 66:35–47

    CAS  PubMed  Google Scholar 

  • Aucouturier P, Carnaud C (2002) The immune system and prion diseases: a relationship of complicity and blindness. J Leukoc Biol 72:1075–1083

    CAS  PubMed  Google Scholar 

  • Auray G, Lacroix-Lamande S, Mancassola R, Dimier-Poisson I, Laurent F (2007) Involvement of intestinal epithelial cells in dendritic cell recruitment during C. parvum infection. Microbes Infect 9:574–582

    Article  CAS  PubMed  Google Scholar 

  • Beringue V, Demoy M, Lasmezas CI, Gouritin B, Weingarten C, Deslys JP, Andreux JP, Couvreur P, Dormont D (2000) Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J Pathol 190:495–502

    Article  CAS  PubMed  Google Scholar 

  • Bielefeldt-Ohmann H, Sabara M, Lawman MJ, Griebel P, Babiuk LA (1988) A monoclonal antibody detects macrophage maturation antigen which appears independently of class II antigen expression. Reactivity of monoclonal EBM11 with bovine macrophages. J Immunol 140:2201–2209

    CAS  PubMed  Google Scholar 

  • Carr KE, Hazzard RA, Reid S, Hodges GM (1996) The effect of size on uptake of orally administered latex microparticles in the small intestine and transport to mesenteric lymph nodes. Pharm Res 13:1205–1209

    Article  CAS  PubMed  Google Scholar 

  • Defaweux V, Dorban G, Antoine N, Piret J, Gabriel A, Jacqmot O, Falisse-Poirier N, Flandroy S, Zorzi D, Heinen E (2007) Neuroimmune connections in jejunal and ileal Peyer's patches at various bovine ages: potential sites for prion neuroinvasion. Cell Tissue Res 329:35–44

    Article  PubMed  Google Scholar 

  • Dorban G, Defaweux V, Demonceau C, Flandroy S, Van Lerberghe PB, Falisse-Poirrier N, Piret J, Heinen E, Antoine N (2007) Interaction between dendritic cells and nerve fibres in lymphoid organs after oral scrapie exposure. Virchows Arch 451:1057–1065

    Article  PubMed  Google Scholar 

  • Espinosa JC, Morales M, Castilla J, Rogers M, Torres JM (2007) Progression of prion infectivity in asymptomatic cattle after oral bovine spongiform encephalopathy challenge. J Gen Virol 88:1379–1383

    Article  CAS  PubMed  Google Scholar 

  • Grathwohl KU, Horiuchi M, Ishiguro N, Shinagawa M (1996) Improvement of PrPSc-detection in mouse spleen early at the preclinical stage of scrapie with collagenase-completed tissue homogenization and sarkosyl-NaCl extraction of PrPSc. Arch Virol 141:1863–1874

    Article  CAS  PubMed  Google Scholar 

  • Herrmann LM, Cheevers WP, Davis WC, Knowles DP, O'Rourke KI (2003) CD21-positive follicular dendritic cells: a possible source of PrPSc in lymph node macrophages of scrapie-infected sheep. Am J Pathol 162:1075–1081

    CAS  PubMed  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Hodges GM, Carr EA, Hazzard RA, Carr KE (1995) Uptake and translocation of microparticles in small intestine. Morphology and quantification of particle distribution. Dig Dis Sci 40:967–975

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann C, Ziegler U, Buschmann A, Weber A, Kupfer L, Oelschlegel A, Hammerschmidt B, Groschup MH (2007) Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy. J Gen Virol 88:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Huang FP, Farquhar CF, Mabbott NA, Bruce ME, MacPherson GG (2002) Migrating intestinal dendritic cells transport PrPSc from the gut. J Gen Virol 83:267–271

    CAS  PubMed  Google Scholar 

  • Iwasaki A, Kelsall BL (2000) Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J Exp Med 191:1381–1394

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Sato Y, Higuchi Y, Nohtomi K, Nagata N, Hasegawa H, Tobiume M, Nakamura Y, Hagiwara K, Furuoka H, Horiuchi M, Yamakawa Y, Sata T (2006) Distribution of PrPSc in cattle with bovine spongiform encephalopathy slaughtered at abattoirs in Japan. Jpn J Infect Dis 59:100–107

    CAS  PubMed  Google Scholar 

  • Jameson B, Baribaud F, Pohlmann S, Ghavimi D, Mortari F, Doms RW, Iwasaki A (2002) Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol 76:1866–1875

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey M, Gonzalez L, Espenes A, Press CM, Martin S, Chaplin M, Davis L, Landsverk T, MacAldowie C, Eaton S, McGovern G (2006) Transportation of prion protein across the intestinal mucosa of scrapie-susceptible and scrapie-resistant sheep. J Pathol 209:4–14

    Article  CAS  PubMed  Google Scholar 

  • Johns JT, Bergen WG (1973) Studies on amino acid uptake by ovine small intestine. J Nutr 103:1581–1586

    CAS  PubMed  Google Scholar 

  • Kagnoff MF, Eckmann L (1997) Epithelial cells as sensors for microbial infection. J Clin Invest 100:6–10

    Article  CAS  PubMed  Google Scholar 

  • Kaneider NC, Kaser A, Dunzendorfer S, Tilg H, Wiedermann CJ (2003) Sphingosine kinase-dependent migration of immature dendritic cells in response to neurotoxic prion protein fragment. J Virol 77:5535–5539

    Article  CAS  PubMed  Google Scholar 

  • Kelsall BL, Strober W (1996) Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer's patch. J Exp Med 183:237–247

    Article  CAS  PubMed  Google Scholar 

  • Keulen LJ van, Vromans ME, Dolstra CH, Bossers A, Zijderveld FG van (2008) Pathogenesis of bovine spongiform encephalopathy in sheep. Arch Virol 153:445–453

    Article  PubMed  CAS  Google Scholar 

  • Kim CL, Umetani A, Matsui T, Ishiguro N, Shinagawa M, Horiuchi M (2004) Antigenic characterization of an abnormal isoform of prion protein using a new diverse panel of monoclonal antibodies. Virology 320:40–51

    Article  CAS  PubMed  Google Scholar 

  • Konold T, Moore SJ, Bellworthy SJ, Simmons HA (2008) Evidence of scrapie transmission via milk. BMC Vet Res 4:14

    Article  PubMed  CAS  Google Scholar 

  • Lacroux C, Simon S, Benestad SL, Maillet S, Mathey J, Lugan S, Corbiere F, Cassard H, Costes P, Bergonier D, Weisbecker JL, Moldal T, Simmons H, Lantier F, Feraudet-Tarisse C, Morel N, Schelcher F, Grassi J, Andreoletti O (2008) Prions in milk from ewes incubating natural scrapie. PLoS Pathog 4:e1000238

    Article  PubMed  CAS  Google Scholar 

  • Landsverk T (1987) The follicle-associated epithelium of the ileal Peyer's patch in ruminants is distinguished by its shedding of 50 nm particles. Immunol Cell Biol 65:251–261

    Article  PubMed  Google Scholar 

  • Mabbott NA, Bruce ME (2002) Follicular dendritic cells as targets for intervention in transmissible spongiform encephalopathies. Semin Immunol 14:285–293

    Article  CAS  PubMed  Google Scholar 

  • Mabbott NA, Mackay F, Minns F, Bruce ME (2000) Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat Med 6:719–720

    Article  CAS  PubMed  Google Scholar 

  • Maignien T, Shakweh M, Calvo P, Marce D, Sales N, Fattal E, Deslys JP, Couvreur P, Lasmezas CI (2005) Role of gut macrophages in mice orally contaminated with scrapie or BSE. Int J Pharm 298:293–304

    Article  CAS  PubMed  Google Scholar 

  • Matte JJ, Girard CL, Seoane JR, Brisson GJ (1982) Absorption of colostral immunoglobulin G in the newborn dairy calf. J Dairy Sci 65:1765–1770

    Article  CAS  PubMed  Google Scholar 

  • McBride PA, Schulz-Schaeffer WJ, Donaldson M, Bruce M, Diringer H, Kretzschmar HA, Beekes M (2001) Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol 75:9320–9327

    Article  CAS  PubMed  Google Scholar 

  • McClean S, Prosser E, Meehan E, O'Malley D, Clarke N, Ramtoola Z, Brayden D (1998) Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 6:153–163

    Article  CAS  PubMed  Google Scholar 

  • Miranda de Carvalho C, Bonnefont-Rebeix C, Rigal D, Chabanne L (2006) Dendritic cells in different animal species: an overview. Pathol Biol (Paris) 54:85–93

    CAS  Google Scholar 

  • Miyazawa K, Aso H, Honda M, Kido T, Minashima T, Kanaya T, Watanabe K, Ohwada S, Rose MT, Yamaguchi T (2006) Identification of bovine dendritic cell phenotype from bovine peripheral blood. Res Vet Sci 81:40–45

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi M, Sawamukai Y (2004) Specific localization of macrophages in pregnant bovine caruncles. Reprod Domest Anim 39:125–128

    Article  CAS  PubMed  Google Scholar 

  • Momotani E, Whipple DL, Thiermann AB, Cheville NF (1988) Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer's patches in calves. Vet Pathol 25:131–137

    Article  CAS  PubMed  Google Scholar 

  • Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, Weissmann C (2000) Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259

    Article  CAS  PubMed  Google Scholar 

  • Neutra MR, Frey A, Kraehenbuhl JP (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell 86:345–348

    Article  CAS  PubMed  Google Scholar 

  • Oldstone MB, Race R, Thomas D, Lewicki H, Homann D, Smelt S, Holz A, Koni P, Lo D, Chesebro B, Flavell R (2002) Lymphotoxin-alpha- and lymphotoxin-beta-deficient mice differ in susceptibility to scrapie: evidence against dendritic cell involvement in neuroinvasion. J Virol 76:4357–4363

    Article  CAS  PubMed  Google Scholar 

  • Pappo J, Ermak TH (1989) Uptake and translocation of fluorescent latex particles by rabbit Peyer's patch follicle epithelium: a quantitative model for M cell uptake. Clin Exp Immunol 76:144–148

    CAS  PubMed  Google Scholar 

  • Prinz M, Montrasio F, Klein MA, Schwarz P, Priller J, Odermatt B, Pfeffer K, Aguzzi A (2002) Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proc Natl Acad Sci USA 99:919–924

    Article  CAS  PubMed  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    Article  CAS  PubMed  Google Scholar 

  • Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A, Sampietro GM, Nespoli A, Viale G, Allavena P, Rescigno M (2005) Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 6:507–514

    Article  CAS  PubMed  Google Scholar 

  • Rybner-Barnier C, Jacquemot C, Cuche C, Dore G, Majlessi L, Gabellec MM, Moris A, Schwartz O, Di Santo J, Cumano A, Leclerc C, Lazarini F (2006) Processing of the bovine spongiform encephalopathy-specific prion protein by dendritic cells. J Virol 80:4656–4663

    Article  CAS  PubMed  Google Scholar 

  • Sein Lwin, Inoshima Y, Ueno H, Ishiguro N (2009) Uptake and transport of foreign particles in Peyer’s patches of both distal ileum and jejunum of calves. Cell Tissue Res 337:125–135

    Article  CAS  Google Scholar 

  • Sethi S, Kerksiek KM, Brocker T, Kretzschmar H (2007) Role of the CD8+ dendritic cell subset in transmission of prions. J Virol 81:4877–4880

    Article  CAS  PubMed  Google Scholar 

  • Smyth SH, Feldhaus S, Schumacher U, Carr KE (2008) Uptake of inert microparticles in normal and immune deficient mice. Int J Pharm 346:109–118

    Article  CAS  PubMed  Google Scholar 

  • Terry LA, Marsh S, Ryder SJ, Hawkins SA, Wells GA, Spencer YI (2003) Detection of disease-specific PrP in the distal ileum of cattle exposed orally to the agent of bovine spongiform encephalopathy. Vet Rec 152:387–392

    CAS  PubMed  Google Scholar 

  • Wells GA, Dawson M, Hawkins SA, Green RB, Dexter I, Francis ME, Simmons MM, Austin AR, Horigan MW (1994) Infectivity in the ileum of cattle challenged orally with bovine spongiform encephalopathy. Vet Rec 135:40–41

    CAS  PubMed  Google Scholar 

  • Wykes M, Pombo A, Jenkins C, MacPherson GG (1998) Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J Immunol 161:1313–1319

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naotaka Ishiguro.

Additional information

This study was partly supported by a grant for BSE research from Ministry of Health, Labour and Welfare, Japan (17270701) and a Grant-in-Aid (no. 17380180) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lwin, S., Inoshima, Y., Atoji, Y. et al. Immune cell types involved in early uptake and transport of recombinant mouse prion protein in Peyer’s patches of calves. Cell Tissue Res 338, 343–354 (2009). https://doi.org/10.1007/s00441-009-0879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0879-6

Keywords

Navigation