Skip to main content

Advertisement

Log in

Characteristic phenotype of immortalized periodontal cells isolated from a Marfan syndrome type I patient

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The periodontal ligament (PDL) is situated between the tooth root and alveolar bone, thereby supporting the tooth, and is composed of collagen and elastic system fibers. Marfan syndrome type I (MFS1, MIM #154700) is caused by mutations in FBN1 encoding fibrillin-1, which is a major microfibrillar protein of elastic system fibers. MFS1 is characterized by tall stature, aortic/mitral valve prolapse, and ectopia lentis and is occasionally accompanied by severe periodontitis. Since little is known about the biological functions of elastic system fibers in PDLs and the pathogenesis of the periodontitis in MFS1, PDL cells were isolated from an MFS1 patient with a heterozygous missense mutation in a calcium-binding epidermal-growth-factor-like domain of FBN1. Isolated PDL cells were immortalized by transducing a retrovirus carrying genes for the human Polycomb group protein, Bmi-1, and human telomerase reverse transcriptase. Immortalized PDL cells from the MFS1 patient (termed M-HPL1) and those of a healthy volunteer (termed HPDL2) both expressed various PDL-related genes. The growth and attachment of M-HPL1 and HPDL2 to hydroxyapatite particles were comparable. However, when M-HPL1 were transplanted with hydroxyapatite particles into immunodeficient mice, disorganized cell alignment and irregular microfibril assembly were noted. The activation of the signaling of transforming grwoth factor-β (TGF-β) is thought to cause the pathogenesis for lung and cardiovascular abnormalities in MFS1. Interestingly, M-HPL1 shows a higher level of activated TGF-β than HPDL2. Thus, M-HPL1 represent a powerful tool for clarifying the biological roles of elastic system fibers in PDL and the pathogenesis of periodontitis in MFS1. Our findings also suggest that FBN1 regulates cell alignment and microfibril assembly in PDLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bauss O, Sadat-Khonsari R, Fenske C, Engelke W, Schwestka-Polly R (2004) Temporomandibular joint dysfunction in Marfan syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:592–598

    Article  PubMed  Google Scholar 

  • Beertsen W, McCulloch CA, Sodek J (1997) The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000:20–40

    Article  Google Scholar 

  • Berry JE, Zhao M, Jin Q, Foster BL, Viswanathan H, Somerman MJ (2003) Exploring the origins of cementoblasts and their trigger factors. Connect Tissue Res 44 (Suppl 1):97–102

    Article  PubMed  CAS  Google Scholar 

  • Boileau C, Jondeau G, Babron MC, Coulon M, Alexandre JA, Sakai L, Melki J, Delorme G, Dubourg O, Bonaiti-Pellie C, Bourdarias JP, Junienet C (1993) Autosomal dominant Marfan-like connective-tissue disorder with aortic dilation and skeletal anomalies not linked to the fibrillin genes. Am J Hum Genet 53:46–54

    PubMed  CAS  Google Scholar 

  • Chien HH, Lin WL, Cho MI (1999) Interleukin-1beta-induced release of matrix proteins into culture media causes inhibition of mineralization of nodules formed by periodontal ligament cells in vitro. Calcif Tissue Int 64:402–413

    Article  PubMed  CAS  Google Scholar 

  • Cho MI, Matsuda N, Lin WL, Moshier A, Ramakrishnan PR (1992) In vitro formation of mineralized nodules by periodontal ligament cells from the rat. Calcif Tissue Int 50:459–467

    Article  PubMed  CAS  Google Scholar 

  • Cudre-Mauroux C, Occhiodoro T, Konig S, Salmon P, Bernheim L, Trono D (2003) Lentivector-mediated transfer of Bmi-1 and telomerase in muscle satellite cells yields a Duchenne myoblast cell line with long-term genotypic and phenotypic stability. Hum Gene Ther 14:1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA, Francomano CA (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE, Band V (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62:4736–4745

    PubMed  CAS  Google Scholar 

  • Flanders KC, Thompson NL, Cissel DS, Van Obberghen-Schilling E, Baker CC, Kass ME, Ellingsworth LR, Roberts AB, Sporn MB (1989) Transforming growth factor-beta 1: histochemical localization with antibodies to different epitopes. J Cell Biol 108:653–660

    Article  PubMed  CAS  Google Scholar 

  • Freeman E (1998) Periodontium. In: Ten Cate AR (ed) Oral histology: development, structure, and function, 5th edn. Mosby, St. Louis, pp 253–286

    Google Scholar 

  • Fujii S, Maeda H, Wada N, Kano Y, Akamine A (2006) Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 324:117–125

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Otsuka-Tanaka Y, Tahara H, Ide T, Abiko Y, Mega J (2005) Establishment of immortalized clonal cells derived from periodontal ligament cells by induction of the hTERT gene. J Oral Sci 47:177–184

    Article  PubMed  CAS  Google Scholar 

  • Fullmer HM, Sheetz JH, Narkates AJ (1974) Oxytalan connective tissue fibers: a review. J Oral Pathol 3:291–316

    Article  PubMed  CAS  Google Scholar 

  • Giannopoulou C, Cimasoni G (1996) Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 75:895–902

    PubMed  CAS  Google Scholar 

  • Haga K, Ohno S, Yugawa T, Narisawa-Saito M, Fujita M, Sakamoto M, Galloway DA, Kiyono T (2007) Efficient immortalization of primary human cells by p16-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 98:147–154

    Article  PubMed  CAS  Google Scholar 

  • Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Sampath Narayanan A (2002) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31:606–611

    Article  PubMed  CAS  Google Scholar 

  • Hewett DR, Lynch JR, Smith R, Sykes BC (1993) A novel fibrillin mutation in the Marfan syndrome which could disrupt calcium binding of the epidermal growth factor-like module. Hum Mol Genet 2:475–477

    Article  PubMed  CAS  Google Scholar 

  • Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C, Jacobs JJ, Van Lohuizen M, Band V, Campisi J, Dimri GP (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23:389–401

    Article  PubMed  CAS  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, Lohuizen M van (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168

    Article  PubMed  CAS  Google Scholar 

  • Kamata N, Fujimoto R, Tomonari M, Taki M, Nagayama M, Yasumoto S (2004) Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med 33:417–423

    Article  PubMed  CAS  Google Scholar 

  • Kapila YL, Kapila S, Johnson PW (1996) Fibronectin and fibronectin fragments modulate the expression of proteinases and proteinase inhibitors in human periodontal ligament cells. Matrix Biol 15:251–261

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto T, Shimizu M (2000) A method for preparing 2- to 50-micron-thick fresh-frozen sections of large samples and undecalcified hard tissues. Histochem Cell Biol 113:331–339

    PubMed  CAS  Google Scholar 

  • Kettle S, Yuan X, Grundy G, Knott V, Downing AK, Handford PA (1999) Defective calcium binding to fibrillin-1: consequence of an N2144S change for fibrillin-1 structure and function. J Mol Biol 285:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    PubMed  CAS  Google Scholar 

  • Kosaki K, Udaka T, Okuyama T (2005) DHPLC in clinical molecular diagnostic services. Mol Genet Metab 86:117–123

    Article  PubMed  CAS  Google Scholar 

  • Kyo S, Nakamura M, Kiyono T, Maida Y, Kanaya T, Tanaka M, Yatabe N, Inoue M (2003) Successful immortalization of endometrial glandular cells with normal structural and functional characteristics. Am J Pathol 163:2259–2269

    PubMed  CAS  Google Scholar 

  • Maslen CL, Corson GM, Maddox BK, Glanville RW, Sakai LY (1991) Partial sequence of a candidate gene for the Marfan syndrome. Nature 352:334–337

    Article  PubMed  CAS  Google Scholar 

  • Mecham RP (1991) Elastin synthesis and fiber assembly. Ann N Y Acad Sci 624:137–146

    Article  PubMed  CAS  Google Scholar 

  • Miyazono K, Ichijo H, Heldin CH (1993) Transforming growth factor-beta: latent forms, binding proteins and receptors. Growth Factors 8:11–22

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, Allard D, Varret M, Claustres M, Morisaki H, Ihara M, Kinoshita A, Yoshiura K, Junien C, Kajii T, Jondeau G, Ohta T, Kishino T, Furukawa Y, Nakamura Y, Niikawa N, Boileau C, Matsumoto N (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860

    Article  PubMed  CAS  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  PubMed  CAS  Google Scholar 

  • Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP, Dietz HC (2004) TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 114:1586–1592

    Article  PubMed  CAS  Google Scholar 

  • Nohutcu RM, McCauley LK, Koh AJ, Somerman MJ (1997) Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol 68:320–327

    PubMed  CAS  Google Scholar 

  • Nollen GJ, Mulder BJ (2004) What is new in the Marfan syndrome? Int J Cardiol 97 (Suppl 1):103–108

    Article  PubMed  Google Scholar 

  • Pyeritz RE (2000) The Marfan syndrome. Annu Rev Med 51:481–510

    Article  PubMed  CAS  Google Scholar 

  • Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398–403

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Yoshizawa T, Takizawa F, Ikegame M, Ishibashi O, Okuda K, Hara K, Ishibashi K, Obinata M, Kawashima H (2002) A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2. J Cell Sci 115:4191–4200

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Handa K, Kiyono T, Hattori S, Yokoi T, Tsubakimoto T, Harada H, Noguchi T, Toyoda M, Sato S, Teranaka T (2005) Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. J Bone Miner Res 20:50–57

    PubMed  CAS  Google Scholar 

  • Sawada T, Sugawara Y, Asai T, Aida N, Yanagisawa T, Ohta K, Inoue S (2006) Immunohistochemical characterization of elastic system fibers in rat molar periodontal ligament. J Histochem Cytochem 54:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Shen ZJ, Kim SK, Jun DY, Park W, Kim YH, Malter JS, Moon BJ (2007) Antisense targeting of TGF-beta1 augments BMP-induced upregulation of osteopontin, type I collagen and Cbfa1 in human Saos-2 cells. Exp Cell Res 313:1415–1425

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    Article  PubMed  CAS  Google Scholar 

  • Shiga M, Kapila YL, Zhang Q, Hayami T, Kapila S (2003) Ascorbic acid induces collagenase-1 in human periodontal ligament cells but not in MC3T3-E1 osteoblast-like cells: potential association between collagenase expression and changes in alkaline phosphatase phenotype. J Bone Miner Res 18:67–77

    Article  PubMed  CAS  Google Scholar 

  • Staszyk C, Gasse H (2004) Oxytalan fibres in the periodontal ligament of equine molar cheek teeth. Anat Histol Embryol 33:17–22

    Article  PubMed  CAS  Google Scholar 

  • Straub AM, Grahame R, Scully C, Tonetti MS (2002) Severe periodontitis in Marfan’s syndrome: a case report. J Periodontol 73:823–826

    Article  PubMed  Google Scholar 

  • Ten Cate AR (1998) Hard tissue formation and destruction. In: Ten Cate AR (ed) Oral histology: development, structure, and function, 5th edn. Mosby, St. Louis, pp 69–77

    Google Scholar 

  • Udaka T, Samejima H, Kosaki R, Kurosawa K, Okamoto N, Mizuno S, Makita Y, Numabe H, Toral JF, Takahashi T, Kosaki K (2005) Comprehensive screening of CREB-binding protein gene mutations among patients with Rubinstein-Taybi syndrome using denaturing high-performance liquid chromatography. Congenit Anom 45:125–131

    Article  CAS  Google Scholar 

  • Westling L, Mohlin B, Bresin A (1998) Craniofacial manifestations in the Marfan syndrome: palatal dimensions and a comparative cephalometric analysis. J Craniofac Genet Dev Biol 18:211–218

    PubMed  CAS  Google Scholar 

  • Yamada S, Murakami S, Matoba R, Ozawa Y, Yokokoji T, Nakahira Y, Ikezawa K, Takayama S, Matsubara K, Okada H (2001) Expression profile of active genes in human periodontal ligament and isolation of PLAP-1, a novel SLRP family gene. Gene 275:279–286

    Article  PubMed  CAS  Google Scholar 

  • Yokoi T, Saito M, Kiyono T, Iseki S, Kosaka K, Nishida E, Tsubakimoto T, Harada H, Eto K, Noguchi T, Teranaka T (2007) Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 327:301–311

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Werner JM, Lack J, Knott V, Handford PA, Campbell ID, Downing AK (2002) Effects of the N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from human fibrillin-1. J Mol Biol 316:113–125

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Soda Y, Takahashi K, Bai Y, Mitsuru A, Igura K, Satoh H, Yamaguchi S, Tani K, Tojo A, Takahashi TA (2006) Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells. Biochem Biophys Res Commun 351:853–859

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. K. Ohyama (former Professor of Tokyo Medical and Dental University), Dr. S. Yamada (Osaka University), and Professor S. Murakami (Osaka University) for their valuable advice and discussion. The authors are also grateful to Professor T. Yoda (Saitama Medical University) and Dr. Y. Fukushima (Saitama Medical University) for organizing the tooth samples and providing the medical history of the patient. The authors also express their gratitude to Marfan Network Japan (MNJ) for their cooperation in the present research. Additional thanks are extended to Dr. T. Yokoi (Aichi Gakuin University), Dr. T. Tsubakimoto (Kanagawa Dental College), Dr. E. Nishida (Aichi Gakuin University), Dr. K. Kosaka (Kanagawa Dental College), and Dr. M. Aino (Aichi Gakuin University) for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Suda.

Additional information

This work was supported by Grants-in-Aid (16390604, 16659570, and 18390552) for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiga, M., Saito, M., Hattori, M. et al. Characteristic phenotype of immortalized periodontal cells isolated from a Marfan syndrome type I patient. Cell Tissue Res 331, 461–472 (2008). https://doi.org/10.1007/s00441-007-0528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0528-x

Keywords

Navigation