Skip to main content

Advertisement

Log in

Injections of leptin into rat ventromedial hypothalamus increase adipocyte apoptosis in peripheral fat and in bone marrow

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The accumulation of fat cells (adipocytes) in bone marrow is now thought to be a factor contributing to age-related bone loss. Women with osteoporosis have higher numbers of marrow adipocytes than women with healthy bone, and bone formation rate is inversely correlated with adipocyte number in bone tissue biopsies from both men and women. Adipogenic differentiation of bone marrow stromal cells increases with age, but the factors regulating populations of mature adipocytes are not well understood. Leptin is thought to regulate adipose tissue mass via its receptors in the ventromedial hypothalamus (VMH). We have therefore tested the hypothesis that stimulation of leptin receptors in the VMH regulates adipocyte number in bone marrow. Results indicate that unilateral twice-daily injections of leptin into the rat VMH for only 4 or 5 days cause a significant reduction in the number of adipocytes in peripheral fat pads and bone marrow and indeed eliminate adipocytes almost entirely from bone marrow of the proximal tibia. Osteoblast surface is not affected with leptin treatment. Apoptosis assays performed on bone marrow samples from control and treated rats have revealed a significant increase in protein concentration of the apoptosis marker caspase-3 with leptin treatment. We conclude that stimulation of leptin receptors in the VMH significantly decreases the adipocyte population in bone marrow, primarily through apoptosis of marrow adipocytes. Elimination of marrow adipocytes via this central pathway may represent a useful strategy for the treatment and prevention of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott C, Kennedy A, Wren A, Rossi M, Murphy K, Seal L, Todd J, Ghatei M, Small C, Bloom S (2003) Identification of hypothalamic nuclei involved in the orexigenic effect of melanin-concentrating hormone. Endocrinology 144:3943–3949

    Article  PubMed  CAS  Google Scholar 

  • Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie P (2002) Transforming growth factor beta-2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. J Bone Miner Res 17:668–677

    Article  PubMed  CAS  Google Scholar 

  • Bathija A, Davis S, Trubowitz S (1979) Bone marrow adipose tissue: response to acute starvation. Am J Hematol 6:191–198

    PubMed  CAS  Google Scholar 

  • Ceddia RB, William WN Jr, Lima FB, Carpinelli AR, Curi R (1998) Pivotal role of leptin in insulin effects. Braz J Med Biol Res 31:715–722

    Article  PubMed  CAS  Google Scholar 

  • Cousin B, Agou K, Leturque A, Ferre P, Girard J, Penicaud L (1992) Molecular and metabolic changes in white adipose tissue of the rat during development of ventromedial hypothalamic obesity. Eur J Biochem 207:377–382

    Article  PubMed  CAS  Google Scholar 

  • Custer R, Ahlfeldt F (1932) Studies on the structure and function of bone marrow. II. Variations in the cellularity in various bones with advancing years of life and their relative response to stimuli. J Lab Clin Med 17:960–962

    Google Scholar 

  • Della-Fera MA, Qian H, Baile CA (2001) Adipocyte apoptosis in the regulation of body fat mass by leptin. Diabetes Obes Metab 3:299–310

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Amling M, Takeda S, Premel M, Schilling A, Beil F, Shen J, Vinson C, Rueger J, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  PubMed  CAS  Google Scholar 

  • Fried S, Bunkin D, Greenberg A (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850

    Article  PubMed  CAS  Google Scholar 

  • Guidobono F, Pagani F, Sibilia V, Netti C, Lattuada N, Rapetti D, Mrak E, Villa I, Cavani F, Bertoni L, Palumbo C, Ferretti M, Marotti G, Rubinacci G (2006) Different skeletal regional response to continuous brain infusion of leptin in the rat. Peptides 27:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Gullicksen P, Hausman D, Dean R, Hartzell D, Baile C (2003) Adipose tissue cellularity and apoptosis after intracerebroventricular injections of leptin and 21 days recovery in rats. Int J Obesity Relat Metab Disord 27:302–312

    Article  CAS  Google Scholar 

  • Gullicksen P, Dean R, Baile C (2004) Detection of DNA fragmentation and apoptotic proteins and quantification of uncoupling protein expression by real-time RT-PCR in adipose tissue. J Biochem Biophys Methods 58:1–13

    Article  PubMed  CAS  Google Scholar 

  • Hamrick MW, Pennington C, Newton D, Xie D, Isales C (2004) Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 34:376–383

    Article  PubMed  CAS  Google Scholar 

  • Hamrick M, Della-Fera MA, Choi Y-H, Pennington C, Hartzell D, Baile CA (2005) Leptin treatment induces loss of bone marrow adipocytes & increases bone formation in leptin-deficient ob/ob mice. J Bone Mineral Res 20:994–1001

    Article  CAS  Google Scholar 

  • Jacob RJ, Dziura J, Medwick MB et al (1997) The effect of leptin is enhanced by microinjection into the ventromedial hypothalamus. Diabetes 46:150–152

    PubMed  CAS  Google Scholar 

  • Jilka R (2002) Osteoblast progenitor cell fate and age-related bone loss. J Musculoskel Neuron Interact 2:581–583

    CAS  Google Scholar 

  • Justesen J, Stenderup K, Ebbesen E, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kajkenova O, Lecka-Czernik F, Gubrij I, Hauser S, Takahashi K, Parfitt A, Jilka R, Manolagas S, Lipschitz D (1997) Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 12:1772–1779

    Article  PubMed  CAS  Google Scholar 

  • Kalra PS, Dube MG, Xu B, Farmerie WG, Kalra SP (1998) Neuropeptide Y (NPY) Y1 receptor mRNA is upregulated in association with transient hyperphagia and body weight gain: evidence for a hypothalamic site for concurrent development of leptin resistance. J Neuroendocrinol 10:43–49

    Article  PubMed  CAS  Google Scholar 

  • Kurabayashi T, Tomita M, Matsushita H, Honda A, Takakuwa K, Tanaka K (2001) Effects of a β3 adrenergic receptor agonist on bone and bone marrow adipocytes in the tibia and lumbar spine of the ovariectomized rat. Calcif Tissue Int 68:248–254

    Article  PubMed  CAS  Google Scholar 

  • Laroche M (2002) Intraosseous circulation from physiology to disease. Joint Bone Spine 69:262–269

    Article  PubMed  Google Scholar 

  • Mach D, Rogers S, Sabino M, Luger N, Schwei M, Pomonis M, Keyser C, Clohisy D, Adams D, O’Leary P, Mantyh P (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113:155–166

    Article  PubMed  CAS  Google Scholar 

  • Maurin A, Chavassieux P, Frappart L, Delmas P, Serre C, Meunier P (2000) Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone 26:485–489

    Article  PubMed  CAS  Google Scholar 

  • Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. Clin Orthop Rel Res 80:147–154

    Article  CAS  Google Scholar 

  • Minaire P, Meunier P, Edouard C, Berbard J, Courpron J, Bourret J (1974) Quantitative histological data on disuse osteoporosis. Calcif Tissue Res 13:371–382

    Google Scholar 

  • Minokoshi Y, Haque MS, Shimazu T (1999) Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48:287–291

    PubMed  CAS  Google Scholar 

  • Moerman E, Teng K, Lipschitz D, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stromal/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389

    Article  PubMed  CAS  Google Scholar 

  • Nuttall M, Gimble J (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27:177–184

    Article  PubMed  CAS  Google Scholar 

  • Orban Z, Remaley AT, Sampson M, Trajanoski Z, Chrousos GP (1999) The differential effect of food intake and beta-adrenergic stimulation on adipose-derived hormones and cytokines in man. J Clin Endocrinol Metab 84:2126–2133

    Article  PubMed  CAS  Google Scholar 

  • Page K, Hartzell D, Li C, Westby A, Della-Fera MA, Azain M, Pringle T, Baile CA (2004) Beta-adrenergic receptor agonists increase apoptosis of adipose tissue in mice. Dome Animal Endocrinol 26:23–31

    Article  CAS  Google Scholar 

  • Parfitt AM, Drezner M, Glorieux F, Kanis J, Malluche H, Meunier P, Ott S, Recker R (1987) Bone histomorphometry: standardization of nomenclature, symbols, units. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Elsevier, New York

    Google Scholar 

  • Pierroz D, Muzzin P, Glatt V, Bouxsein M, Rizzoli R, Ferrari S (2004) β1β2-Adrenergic receptor KO mice have decreased total body and cortical bone mass despite increased trabecular bone number. J Bone Miner Res 19 (Suppl 1):S1121

    Google Scholar 

  • Pierroz D, Bouxsein M, Muzzin P, Rizzoli R, Ferrari S (2005) Bone loss following ovariectomy is maintained in absence of adrenergic receptor β1 and β2 signaling. J Bone Miner Res 20 (Suppl 1):S277

    Google Scholar 

  • Qian H, Azain M, Compton M, Hartzell D, Hausman G, Baile C (1998) Brain administration of leptin causes deletion of adipocytes by apoptosis. Endocrinology 139:791–794

    Article  PubMed  CAS  Google Scholar 

  • Satoh N, Ogawa Y, Katsuura G et al (1997) Pathophysiological significance of the obese gene product, leptin, in ventromedial hypothalamus (VMH)-lesioned rats: evidence for loss of its satiety effect in VMH-lesioned rats. Endocrinology 138:947–954

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Eleftriou F, Levasseur R, Liu X, Zhao L, Parker K, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Rajaratnman J, Dneton J, Hoyland J, Byers R (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698

    Article  PubMed  CAS  Google Scholar 

  • Wronski T, Morey-Holton E, Jee W (1981) Skeletal alterations in rats during spaceflight. Adv Space Res 1:135–140

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Hamrick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamrick, M.W., Della Fera, M.A., Choi, YH. et al. Injections of leptin into rat ventromedial hypothalamus increase adipocyte apoptosis in peripheral fat and in bone marrow. Cell Tissue Res 327, 133–141 (2007). https://doi.org/10.1007/s00441-006-0312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0312-3

Keywords

Navigation