Skip to main content
Log in

Giant reticulospinal synapse in lamprey: molecular links between active and periactive zones

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Deciphering the function of synaptic release sites is central to understanding neuronal communication. Here, we review studies of the lamprey giant reticulospinal synapse, a model that can be used to dissect synaptic vesicle trafficking at single release sites. The presynaptic axon is large and contains active zones that are spatially separated from each other. During activity, synaptic vesicle membrane is shuttled between the active zone and the periactive zone at which endocytosis occurs. Recent studies have shown that the periactive zone contains an actin-rich cytomatrix that expands during synaptic activity. This cytomatrix has been implicated in multiple functions that include (1) activity-dependent trafficking of proteins between the synaptic vesicle cluster and the periactive zone, (2) synaptic vesicle endocytosis, and (3) the movement of newly formed synaptic vesicles to the vesicle cluster. The actin cytomatrix thus provides a link between the active zone and the periactive zone; this link appears to be critical for sustained cycling of synaptic vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blackmer T, Larsen EC, Takahashi M, Martin TF, Alford S, Hamm HE (2001) G protein betagamma subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292:293–297

    Article  PubMed  CAS  Google Scholar 

  • Blackmer T, Larsen EC, Bartleson C, Kowalchyk JA, Yoon EJ, Preininger AM, Alford S, Hamm HE, Martin TF (2005) G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Nat Neurosci 8:421–425

    PubMed  CAS  Google Scholar 

  • Bloom O, Evergren E, Tomilin N, Kjaerulff O, Löw P, Brodin L, Pieribone VA, Greengard P, Shupliakov O (2003) Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol 161:737–747

    Article  PubMed  CAS  Google Scholar 

  • Brodin L, Shupliakov O (1994) Functional diversity of central glutamate synapses—pre- and post-synaptic mechanisms. Acta Physiol Scand 150:1–10

    Article  PubMed  CAS  Google Scholar 

  • Brodin L, Bakeeva L, Shupliakov O (1999) Presynaptic mitochondria and the temporal pattern of neurotransmitter release. Philos Trans R Soc Lond Biol 354:365–372

    Article  PubMed  CAS  Google Scholar 

  • Brodin L, Löw P, Shupliakov O (2000) Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr Opin Neurobiol 10:312–320

    Article  PubMed  CAS  Google Scholar 

  • Buchanan JT (2001) Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology. Prog Neurobiol 63:441–466

    Article  PubMed  CAS  Google Scholar 

  • Darcy KJ, Staras K, Collinson LM, Goda Y (2006) Constitutive sharing of recycling synaptic vesicles between presynaptic boutons. Nat Neurosci 9:315–321

    Article  PubMed  CAS  Google Scholar 

  • Deliagina TG, Fagerstedt P (2000) Responses of reticulospinal neurons in intact lamprey to vestibular and visual inputs. J Neurophysiol 83:864–878

    PubMed  CAS  Google Scholar 

  • Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55

    Article  PubMed  CAS  Google Scholar 

  • Doussau F, Augustine GJ (2000) The actin cytoskeleton and neurotransmitter release: an overview. Biochimie 82:353–363

    Article  PubMed  CAS  Google Scholar 

  • Dunaevsky A, Connor EA (2000) F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J Neurosci 20:6007–6012

    PubMed  CAS  Google Scholar 

  • Engqvist-Goldstein AE, Drubin DG (2003) Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287–332

    Article  PubMed  CAS  Google Scholar 

  • Estes PS, Roos J, Bliek A van der, Kelly RB, Krishnan KS, Ramaswami M (1996) Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. J Neurosci 16:5443–5456

    PubMed  CAS  Google Scholar 

  • Evergren E, Tomilin N, Vasylieva E, Sergeeva V, Bloom O, Gad H, Capani F, Shupliakov O (2004a) A pre-embedding immunogold approach for detection of synaptic endocytic proteins in situ. J Neurosci Methods 135:169–174

    Article  PubMed  CAS  Google Scholar 

  • Evergren E, Marcucci M, Tomilin N, Löw P, Slepnev V, Andersson F, Gad H, Brodin L, De Camilli P, Shupliakov O (2004b) Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse. Traffic 5:514–528

    Article  PubMed  CAS  Google Scholar 

  • Evergren E, Zotova E, Brodin L, Shupliakov O (2006) Efficiency of synaptic vesicle recycling in tonic and phasic central synapses. In: 5th Forum of European Neuroscience. Vienna, Austria

  • Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED, Garner CC (2003) Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 278:20268–20277

    Article  PubMed  CAS  Google Scholar 

  • Gad H, Löw P, Zotova E, Brodin L, Shupliakov O (1998) Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 21:607–616

    Article  PubMed  CAS  Google Scholar 

  • Gad H, Ringstad N, Löw P, Kjaerulff O, Gustafsson J, Wenk M, Di Paolo G, Nemoto Y, Crun J, Ellisman MH, De Camilli P, Shupliakov O, Brodin L (2000) Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron 27:301–312

    Article  PubMed  CAS  Google Scholar 

  • Genko S, Tomilin N, Evergren E, Brodin L, Karlsson R, Shupliakov O (2005) Profilin:actin operates in signaling synapses in the lamprey spinal chord. American Society for Cell Biology, 45th Annual Meeting, San Francisco, Calif., USA

  • Grillner S, Wallen P (2002) Cellular bases of a vertebrate locomotor system—steering, intersegmental and segmental co-ordination and sensory control. Brain Res Brain Res Rev 40:92–106

    Article  PubMed  Google Scholar 

  • Guichet A, Wucherpfennig T, Dudu V, Etter S, Wilsch-Brauniger M, Hellwig A, Gonzalez-Gaitan M, Huttner WB, Schmidt AA (2002) Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. EMBO J 21:1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Gundelfinger ED, Kessels MM, Qualmann B (2003) Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol 4:127–139

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson JS, Birinyi A, Crum J, Ellisman M, Brodin L, Shupliakov O (2002) Ultrastructural organization of lamprey reticulospinal synapses in three dimensions. J Comp Neurol 450:167–182

    Article  PubMed  Google Scholar 

  • Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H (1989) The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol 108:111–126

    Article  PubMed  CAS  Google Scholar 

  • Kavalali ET (2006) Synaptic vesicle reuse and its implications. Neuroscientist 12:57–66

    Article  PubMed  CAS  Google Scholar 

  • Koh TW, Verstreken P, Bellen HJ (2004) Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43:193–205

    Article  PubMed  CAS  Google Scholar 

  • Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20:917–925

    Article  PubMed  CAS  Google Scholar 

  • Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, McNamara JO, Greengard P, et al (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci USA 92:9235–9239

    Article  PubMed  CAS  Google Scholar 

  • Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW (2004) Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43:207–219

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550

    Article  PubMed  CAS  Google Scholar 

  • Morgan JR, Di Paolo G, Werner H, Shchedrina VA, Pypaert M, Pieribone VA, De Camilli P (2004) A role for talin in presynaptic function. J Cell Biol 167:43–50

    Article  PubMed  CAS  Google Scholar 

  • Murthy VN, De Camilli P (2003) Cell biology of the nerve terminal. Annu Rev Neurosci 26:701–728

    Article  PubMed  CAS  Google Scholar 

  • Photowala H, Freed R, Alford S (2005) Location and function of vesicle clusters, active zones and Ca2+ channels in the lamprey presynaptic terminal. J Physiol (Lond) 569:119–135

    Article  CAS  Google Scholar 

  • Photowala H, Blackmer T, Schwartz E, Hamm HE, Alford S (2006) G protein beta gamma-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties. Proc Natl Acad Sci USA 103:4281–4286

    Article  CAS  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497

    Article  PubMed  CAS  Google Scholar 

  • Qualmann B, Kessels MM, Kelly RB (2000) Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol 150:111–116

    Article  Google Scholar 

  • Richards DA, Rizzoli SO, Betz WJ (2004) Effects of wortmannin and latrunculin A on slow endocytosis at the frog neuromuscular junction. J Physiol (Lond) 557:77–91

    Article  CAS  Google Scholar 

  • Ringstad N, Gad H, Low P, Di Paolo G, Brodin L, Shupliakov O, De Camilli P (1999) Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24:143–154

    Article  PubMed  CAS  Google Scholar 

  • Roos J, Kelly RB (1999) The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr Biol 9:1411–1414

    Article  PubMed  CAS  Google Scholar 

  • Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493

    Article  PubMed  CAS  Google Scholar 

  • Rovainen CM (1979) Neurobiology of lampreys. Physiol Rev 59:1007–1077

    PubMed  CAS  Google Scholar 

  • Royle SJ, Lagnado L (2003) Endocytosis at the synaptic terminal. J Physiol (Lond) 553:345–355

    Article  CAS  Google Scholar 

  • Sakaba T, Neher E (2003) Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. J Neurosci 23:837–846

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135

    Article  PubMed  CAS  Google Scholar 

  • Schoch S, Gundelfinger ED (2006) Molecular organization of the presynaptic active zone. Cell and Tissue Res (this issue)

  • Shupliakov O, Brodin L (2000) A model glutamate synapse - the lamprey giant reticulospinal axon. In: Ottersen OP, Storm-Mathisen J (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 273–288

    Google Scholar 

  • Shupliakov O, Brodin L, Cullheim S, Ottersen OP, Storm-Mathisen J (1992) Immunogold quantification of glutamate in two types of excitatory synapse with different firing patterns. J Neurosci 12:3789–3803

    PubMed  CAS  Google Scholar 

  • Shupliakov O, Ottersen OP, Storm-Mathisen J, Brodin L (1997a) Glial and neuronal glutamine pools at glutamatergic synapses with distinct properties. Neuroscience 77:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Shupliakov O, Löw P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L (1997b) Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276:259–263

    Article  PubMed  CAS  Google Scholar 

  • Shupliakov O, Bloom O, Gustafsson JS, Kjaerulff O, Löw P, Tomilin N, Pieribone VA, Greengard P, Brodin L (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc Natl Acad Sci USA 99:14476–14481

    Article  PubMed  CAS  Google Scholar 

  • Wickelgren WO, Leonard JP, Grimes MJ, Clark RD (1985) Ultrastructural correlates of transmitter release in presynaptic areas of lamprey reticulospinal axons. J Neurosci 5:1188–1201

    PubMed  CAS  Google Scholar 

  • Zelenin PV (2005) Activity of individual reticulospinal neurons during different forms of locomotion in the lamprey. Eur J Neurosci 22:2271–2282

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. E. Evergren, P. Löw, and C. Soderblom for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lennart Brodin or Oleg Shupliakov.

Additional information

This work was supported by Swedish Research Council grants (K2004-33X-11287-10A, LB; K2005-32X-13473-06A, OS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodin, L., Shupliakov, O. Giant reticulospinal synapse in lamprey: molecular links between active and periactive zones. Cell Tissue Res 326, 301–310 (2006). https://doi.org/10.1007/s00441-006-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0216-2

Keywords

Navigation