Skip to main content

Advertisement

Log in

Distribution of lymphatic vessels in mouse thymus: immunofluorescence analysis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Thymic blood and lymphatic vessels in humans and laboratory animals have been investigated in morphological studies. However, occasionally a clear distinction between blood vessels and lymphatic vessels cannot be made from morphological characteristics of the vasculature. To visualize thymic lymphatics in normal adult BALB/c mice, we used antibodies against specific markers of lymphatic endothelial cells. Expression of vascular endothelial growth factor receptor–3 (VEGFR–3) was detected throughout the thymus, i.e., the capsule, cortex, and medulla. Most thymic lymphatics were present in capillaries of ~20 μm in caliber. The plexuses of lymphatic capillaries were occasionally detectable. Lymphatic vessels were frequently adjacent to CD31–positive blood vessels, and some lymphatic vessels were seen in the immediate vicinity of or within the perivascular spaces around postcapillary venules. The identity of VEGFR–3–positive vessels as lymphatics was further confirmed by staining with additional markers: LYVE–1, Prox–1, neuropilin–2, and secondary lymphoid tissue chemokine (SLC). The distributions of LYVE–1 were similar to those of VEGFR–3. Most lymphatic vessels were also identified by Prox–1. Neuropilin–2 was restricted to lymphatic vessels in the thymus. The most abundant expression of SLC in the thymus was in medullar epithelial cells; SLC was also expressed in lymphatic vessels and blood vessels. Thus, lymphatic endothelium in mouse thymus was characterized by positive staining with antibodies to VEGFR–3, LYVE–1, Prox–1, neuropilin–2, or SLC, but not with an antibody to CD31. Our results suggest the presence of lymphatic capillary networks throughout the thymus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson M, Anderson SK, Farr AG (2000) Thymic vasculature: organizer of the medullary epithelial compartment? Int Immunol 12:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Autio–Harmainen H, Karttunen T, Apaja–Sarkkinen M, Dammert K, Risteli L (1988) Laminin and type IV collagen in different histological stages of Kaposi’s sarcoma and other vascular lesions of blood vessel or lymphatic vessel origin. Am J Surg Pathol 12:469–476

    PubMed  CAS  Google Scholar 

  • Barsky SH, Baker A, Siegal GP, Togo S, Liotta LA (1983) Use of anti-basement membrane antibodies to distinguish blood vessel capillaries from lymphatic capillaries. Am J Surg Pathol 7:667–677

    Article  PubMed  CAS  Google Scholar 

  • Bearman RM, Bensch KG, Levine GD (1975) The normal human thymic vasculature: an ultrastructural study. Anat Rec 183:485–497

    Article  PubMed  CAS  Google Scholar 

  • Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) LYVE–1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801

    Article  PubMed  CAS  Google Scholar 

  • Berrih S, Savino W, Cohen S (1985) Extracellular matrix of the human thymus: immunofluorescence studies on frozen sections and cultured epithelial cells. J Histochem Cytochem 33:655–664

    PubMed  CAS  Google Scholar 

  • Campbell JJ, Pan J, Butcher EC (1999) Developmental switches in chemokine responses during T cell maturation. J Immunol 163:2353–2357

    PubMed  CAS  Google Scholar 

  • Clark SL Jr (1963) The thymus in mice of strain 129/J, studied with the electron microscope. Am J Anat 112:1–33

    Article  PubMed  Google Scholar 

  • Dunn TB (1954) Normal and pathologic anatomy of the reticular tissue in laboratory mice, with a classification and discussion of neoplasms. J Natl Cancer Inst 14:1281–1433

    PubMed  CAS  Google Scholar 

  • Ernstrom U, Glyllensten L, Larsson B (1965) Venous output of lymphocytes from the thymus. Nature 207:540–5416

    Article  PubMed  CAS  Google Scholar 

  • Ezaki T, Matsuno K, Fujii H, Hayashi N, Miyakawa K, Ohmori J, Kotani M (1990) A new approach for identification of rat lymphatic capillaries using a monoclonal antibody. Arch Histol Cytol 53(Suppl):77–86

    Article  PubMed  Google Scholar 

  • Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95:258–263

    Article  PubMed  CAS  Google Scholar 

  • Hammar JA (1936) Die normal-morphologische Thymusforschung im letzten Vierteljahrhundert, Analyse und Synthese. Barth, Leipzig

    Google Scholar 

  • Hoepke H, Peter H (1936) Das Verhalten des Igelthymus bei saurer und basischer Ernaehrung. Z Mikrosk Anat Forsch 39:263–314

    Google Scholar 

  • Hwang WS, Ho TY, Luk SC, Simon GT (1974) Ultrastructure of the rat thymus. A transmission, scanning electron microscope, and morphometric study. Lab Invest 31:473–487

    PubMed  CAS  Google Scholar 

  • Ito T, Hoshino T (1966) Light and electron microscopic observations on the vascular pattern of the thymus of the mouse. Arch Histol Jpn 27:351–361

    PubMed  CAS  Google Scholar 

  • Jdanov DA (1960) New data on the functional morphology of the lymphatic system of the endocrine glands. Acta Anat 41:240–259

    Article  CAS  PubMed  Google Scholar 

  • Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, Yla–Herttuala S, Finegold DN, Ferrell RE, Alitalo K (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 98:12677–12682

    Article  PubMed  CAS  Google Scholar 

  • Kato S (1988) Intralobular lymphatic vessels and their relationship to blood vessels in the mouse thymus. Light- and electron-microscopic study. Cell Tissue Res 253:181–187

    Article  PubMed  CAS  Google Scholar 

  • Kato S (1990) Enzyme-histochemical demonstration of intralobular lymphatic vessels in the mouse thymus. Arch Histol Cytol 53(Suppl):87–94

    Article  PubMed  Google Scholar 

  • Kato S (1997) Thymic microvascular system. Microsc Res Tech 38:287–299

    Article  PubMed  CAS  Google Scholar 

  • Kostowiecki M (1967) Development of the so-called double-walled blood vessels of the thymus. Z Mikrosk Anat Forsch 77:406–431

    PubMed  CAS  Google Scholar 

  • Kotani M, Seiki K, Yamashita A, Horii I (1966) Lymphatic drainage of thymocytes to the circulation in the guinea pig. Blood 27:511–520

    PubMed  CAS  Google Scholar 

  • Kotani M, Kawakita M, Fukanogi M, Yamashita A, Seiki K (1967) The passage of thymic lymphocytes to the circulation in the rat. Okajimas Folia Anat Jpn 43:61–71

    PubMed  CAS  Google Scholar 

  • Kriehuber E, Breiteneder–Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194:797–808

    Article  PubMed  CAS  Google Scholar 

  • Kubo H, Fujiwara T, Jussila L, Hashi H, Ogawa M, Shimizu K, Awane M, Sakai Y, Takabayashi A, Alitalo K, Yamaoka Y, Nishikawa SI (2000) Involvement of vascular endothelial growth factor receptor–3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96:546–553

    PubMed  CAS  Google Scholar 

  • Leak LV, Bruke JF (1966) Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat 118:785–810

    Article  PubMed  CAS  Google Scholar 

  • Lymboussaki A, Partanen TA, Olofsson B, Thomas–Crusells J, Fletcher CD, de Waal RM, Kaipainen A, Alitalo K (1998) Expression of the vascular endothelial growth factor C receptor VEGFR–3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol 153:395–403

    PubMed  CAS  Google Scholar 

  • O’Morchoe CC, O’Morchoe PJ (1987) Differences in lymphatic and blood capillary permeability: ultrastructural-functional correlations. Lymphology 20:205–209

    PubMed  CAS  Google Scholar 

  • Nerlich AG, Schleicher E (1991) Identification of lymph and blood capillaries by immunohistochemical staining for various basement membrane components. Histochemistry 96:449–453

    Article  PubMed  CAS  Google Scholar 

  • Miyasaka M, Pabst R, Dudler L, Cooper M, Yamaguchi K (1990) Characterization of lymphatic and venous emigrants from the thymus. Thymus 16:29–43

    PubMed  CAS  Google Scholar 

  • Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, Alitalo K, Suda T (2005) Angiopoietin–1 promotes LYVE–1–positive lymphatic vessel formation. Blood 105:4649–4656

    Article  PubMed  CAS  Google Scholar 

  • Sainte–Marie G, Leblond CP (1958) Origin and fate of cells in the medulla of rat thymus. Proc Soc Exp Biol Med 98:909–915

    PubMed  CAS  Google Scholar 

  • Smith C (1955) Studies on the thymus of the mammal. VIII. Intrathymic lymphatic vessels. Anat Rec 122:173–179

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Lu Z, Luo Y, Quackenbush EJ, Berman MA, Collins–Racie LA, Mi S, Reilly C, Lo D, Jacobs KA, Dorf ME (1997) Identification of a new mouse beta-chemokine, thymus-derived chemotactic agent 4, with activity on T lymphocytes and mesangial cells. J Immunol 159:5671–5679

    PubMed  CAS  Google Scholar 

  • Pereira G, Clermont Y (1971) Distribution of cell web-containing epithelial reticular cells in the rat thymus. Anat Rec 169:613–626

    Article  PubMed  CAS  Google Scholar 

  • Petrova TV, Makinen T, Makela TP, Saarela J, Virtanen I, Ferrell RE, Finegold DN, Kerjaschki D, Yla–Herttuala S, Alitalo K (2002) Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox–1 homeobox transcription factor. EMBO J 21:4593–4599

    Article  PubMed  CAS  Google Scholar 

  • Ushiki T (1986) A scanning electron-microscopic study of the rat thymus with special reference to cell types and migration of lymphocytes into the general circulation. Cell Tissue Res 244:285–298

    Article  PubMed  CAS  Google Scholar 

  • Van Vilet E, Melis M, Van Ewijk W (1984) Monoclonal antibodies to stromal cell types of the mouse thymus. Eur J Immunl 14:524–529

    Article  Google Scholar 

  • Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–778

    Article  PubMed  CAS  Google Scholar 

  • Williams RM, Chanana AD, Cronkite EP, Waksman BH (1971) Antigenic markers on cells leaving calf thymus by way of the efferent lymph and venous blood. J Immunol 106:1143–1146

    PubMed  CAS  Google Scholar 

  • Witte MH, Bernas MJ, Martin CP, Witte CL (2001) Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Tech 55:122–145

    Article  PubMed  CAS  Google Scholar 

  • Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. H. Kubo, Dr. W. Van Ewijk, Dr. M. Itoi, and Dr. G. Oliver for providing the anti–VEGFR–3, ER–TR5, and anti–Prox–1 antibodies. We are grateful to Dr. S. Kato for reviewing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikako Odaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odaka, C., Morisada, T., Oike, Y. et al. Distribution of lymphatic vessels in mouse thymus: immunofluorescence analysis. Cell Tissue Res 325, 13–22 (2006). https://doi.org/10.1007/s00441-005-0139-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0139-3

Keywords

Navigation