Skip to main content

Advertisement

Log in

Increased noise sensitivity and altered inner ear MENA distribution in VASP−/− mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Vasodilator-stimulated phosphoprotein (VASP) and mammalian-enabled protein (MENA) share similar cellular localisation and functions (signal transduction pathways, regulation of actin cytoskeleton dynamics). Functional substitution and compensation among Ena/VASP proteins have been proposed as the reason for the absence of major morphological and functional deficits in VASP−/− mice. The aim of this study was to investigate VASP expression in the mouse cochlea, to analyse cochlear function in VASP−/− mice compared with wildtype mice, and to analyse cochlear MENA distribution taking into account that MENA protein might compensate VASP loss in the cochlea of VASP−/− mice. We confirmed specific VASP expression in the pillar cells of the mice organ of Corti as previously reported for rat cochlea. By analysing the hearing function in VASP−/− mice, we found no differences in auditory brainstem responses and distortion product otoacoustic emissions from those of wildtype mice but evidence for an increased noise sensitivity at lower frequencies. When MENA protein levels in cochlea tissue were tested in mutant and wildtype mice by Western blot analysis, no significant differences were found, as was also seen with regard to MENA mRNA levels in laser-microdissected single pillar cells. Most surprisingly, however, MENA protein was absent in pillar cells of VASP−/− mice, whereas it was detected in other cochlear cells. The finding of a cell-specific, and not organ-specific, redundancy of MENA protein expression noted for the first time in VASP−/− mice is proposed as the reason for the observed distinct cochlear phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahern-Djamali SM, Comer AR, Bachmann C, Kastenmeier AS, Reddy SK, Beckerle MC, Walter U, Hoffmann FM (1998) Mutations in Drosophila enabled and rescue by human vasodilator-stimulated phosphoprotein (VASP) indicate important functional roles for Ena/VASP homology domain 1 (EVH1) and EVH2 domains. Mol Biol Cell 9:2157–2171

    CAS  PubMed  Google Scholar 

  • Aszódi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, Offermanns S, Fässler R (1999) The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J 18:37–48

    Article  PubMed  Google Scholar 

  • Bachmann C, Fischer L, Walter U, Reinhard M (1999) The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J Biol Chem 274:23549–23557

    Article  CAS  PubMed  Google Scholar 

  • Gambaryan S, Hauser W, Kobsar A, Glazova M, Walter U (2001) Distribution, cellular localization, and postnatal development of VASP and MENA expression in mouse tissues. Histochem Cell Biol 116:535–543

    Article  CAS  PubMed  Google Scholar 

  • Garcia Arguinzonis MI, Galler AB, Walter U, Reinhard M, Simm A (2002) Increased spreading, Rac/p21-activated kinase (PAK) activity, and compromised cell motility in cells deficient in vasodilator-stimulated phosphoprotein (VASP). J Biol Chem 277:45604–45610

    Article  CAS  PubMed  Google Scholar 

  • Hallbrügge M, Walter U (1989) Purification of a vasodilator-regulated phosphoprotein from human platelets. Eur J Biochem 185:41–50

    PubMed  Google Scholar 

  • Hallbrügge M, Friedrich C, Eigenthaler M, Schanzenbacher P, Walter U (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem 265:3088–3093

    PubMed  Google Scholar 

  • Hauser W, Knobeloch KP, Eigenthaler M, Gambaryan S, Krenn V, Geiger J, Glazova M, Rohde E, Horak I, Walter U, Zimmer M (1999) Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci USA 96:8120–8125

    Article  CAS  PubMed  Google Scholar 

  • Held H (1927) Die Cochlea der Säuger und der Vögel, ihre Entwicklung und ihr Bau. In: Bethe A (ed) Handbuch der normalen und pathologischen Physiologie, Band XI. Rezeptororgane. Springer, Berlin Heidelberg New York, pp 467–534

    Google Scholar 

  • Henderson CG, Tucker JB, Mogensen MM, Mackie JB, Chaplin MA, Slepecky NB, Leckie LM (1995) Three microtuble-organizing centres collaborate in a mouse cochlear epithelial cell during supracellulary coordinated control of microtuble positioning. J Cell Sci 108:37–50

    CAS  PubMed  Google Scholar 

  • Kikuchi T, Takasaka T, Tonosaki A, Katori Y, Shinkawa H (1991) Microtubles of guinea pig cochlear epithelial cells. Acta Otolaryngol 111:286–290

    CAS  PubMed  Google Scholar 

  • Knipper M, Köpschall I, Rohbock K, Köpke AKE, Bonk I, Zimmermann U, Zenner HP (1997) Transient expression of NMDA receptors during rearrangement of AMPA-receptor-expressing fibres in the developing inner ear. Cell Tissue Res 287:23–41

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564

    Article  CAS  PubMed  Google Scholar 

  • Lanier LM, Gertler FB (2000) From Abl to actin: Abl tyrosine kinase and associated proteins in growth cone motility. Curr Opin Neurobiol 10:80–87

    Google Scholar 

  • Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM, Macklis JD, Kwiatowski D, Soriano P, Gertler FB (1999) MENA is required for neurolation and commissure formation. Neuron 22:313–325

    Article  CAS  PubMed  Google Scholar 

  • Markert T, Krenn V, Leebmann J, Walter U (1996) High expression of the focal adhesion- and microfilament-associated protein VASP in vascular smooth muscle and endothelial cells of intact human vessel wall. Basic Res Cardiol 91:337–343

    CAS  PubMed  Google Scholar 

  • Mattson DL, Bellehumeur TG (1996) Comparison of three chemiluminescent horseradish peroxidase substrates for immunoblotting. Anal Biochem 240:306

    Article  CAS  PubMed  Google Scholar 

  • Nobili R, Mammano F, Ashmore J (1998) How well do we understand the cochlea? Trends Neurosci 21:159–167

    Article  CAS  PubMed  Google Scholar 

  • Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30

    Article  CAS  PubMed  Google Scholar 

  • Olson ES, Mountain DC (1994) Mapping the cochlear partition’s stiffness to its cellular architecture. J Acoust Soc Am 95:395–400

    CAS  PubMed  Google Scholar 

  • Pfohler C, Fixemer T, Jung V, Dooley S, Remberger K, Bonkhoff H (1998) In situ hybridisation analysis of genes coding collagen IV alpha1 chain, laminin beta1 chain, and S-laminin in prostate tissue and prostatic cancer: increased basement membrane gene expression in high-grade and metastatic lesions. Prostate 36:143–150

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen H, Ekvall L, Scholtz A, Schrott-Fischer A (2000) Structural/audiometric correlations in a human inner ear with noise-induced hearing loss. Hear Res 141:129–139

    Article  CAS  PubMed  Google Scholar 

  • Reinhard M, Halbrügge M, Scheer U, Wiegand C, Jokusch BM, Walter U (1992) The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11:2063–2070

    CAS  PubMed  Google Scholar 

  • Reinhard M, Jarchau T, Reinhard K, Walter U (1999) VASP. In: Kreis T, Vale R (eds) Guidebook to the cytoskeletal and motor proteins. Sambrook and Tooze Publication at Oxford University Press, Oxford, pp 168–171

    Google Scholar 

  • Reinhard M, Jarchau K, Walter U (2001) Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci 26:243–249

    Article  CAS  PubMed  Google Scholar 

  • Schick B, Kieβling P, Polzar B, Mannherz HG (1993) Both isoforms of skeletal muscle subfragment 1 (S1A1 and S1A2) can induce actin polymerisation with equal speed in the absence of ATP. Eur J Cell Biol 62:205–213

    CAS  PubMed  Google Scholar 

  • Schick B, Praetorius M, Eigenthaler M, Mack A, Plinkert PK, Walter U, Dazert S, Knipper M (2003) Expression of VASP and zyxin in cochlear pillar cells: indication for actin-based dynamics? Cell Tissue Res 311:315–323

    CAS  PubMed  Google Scholar 

  • Tani K, Sato S, Sukezane T, Kojima H, Hirose H, Hanafusa H, Shishido T (2003) Abl interactor 1 promotes tyrosine 296 phosphorylation of mammalian enabled (MENA) by c-Abl kinase. J Biol Chem 278:21685–21692

    Article  CAS  PubMed  Google Scholar 

  • Tolomeo JA, Holley MC (1997) Mechanics of microtuble bundles in pillar cells from the inner ear. Biophys J 73:2241–2247

    CAS  Google Scholar 

  • Tucker JB, Paton CC, Henderson CG, Mogensen MM (1993) Microtuble rearrangement and bending during assembly of large curved microtuble bundles in mouse cochlear epithelial cells. Cell Motil Cytoskeleton 25:49–58

    CAS  PubMed  Google Scholar 

  • Tucker JB, Mogensen MM, Paton CC, Mackie JB, Henderson CG, Leckie LM (1995) Formation of two microtuble-nucleating sites which perform differently during centrosomol reorganization in a mouse cochlear epithelial cell. J Cell Sci 108:1333–1345

    CAS  PubMed  Google Scholar 

  • Walter U, Eigenthaler M, Geiger J, Reinhard M (1993) Role of cyclic nucleotide-dependent protein kinases and their common substrate VASP in regulation of human platelets. Adv Exp Med Biol 344:237–249

    CAS  PubMed  Google Scholar 

  • Wang Y, Hirose K, Lieberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    Article  PubMed  Google Scholar 

  • Zimmer M, Fink T, Fischer L, Hauser W, Scherer K, Lichter P, Walter U (1996) Cloning of the VASP (vasodilator-stimulated phosphoprotein) genes in human and mouse: structure, sequence, and chromosomal localization. Genomics 36:227–233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Corey and Kim Baker for critical reading of the manuscript and helpful discussions. We thank Monika Hoffmann, Karin Rohbock and Michael Laue for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schick, B., Praetorius, M., Eigenthaler, M. et al. Increased noise sensitivity and altered inner ear MENA distribution in VASP−/− mice. Cell Tissue Res 318, 493–502 (2004). https://doi.org/10.1007/s00441-004-0964-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0964-9

Keywords

Navigation