Skip to main content
Log in

Disruption of the Hoxa3 homeobox gene results in anomalies of the carotid artery system and the arterial baroreceptors

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Homeobox gene Hoxa3 is expressed in the third pharyngeal arch and pouch and is required for development of the third arch artery in addition to the thymus, parathyroid gland and carotid body. We therefore statistically analyzed malformations of the carotid artery system in Hoxa3 homozygous mutant mice, in comparison with wild-type and heterozygous littermates. To identify the carotid artery system, red carbon ink was injected, or vascular casts were made by injection of Mercox resin and observed by scanning electron microscopy. Furthermore, innervation of the carotid sinus and baroreceptor regions in the aortic arch and right subclavian artery were studied in the Hoxa3 null mutants having an abnormal carotid artery system by immunohistochemistry with TuJ1 and protein gene product (PGP) 9.5 antibodies, which recognize nerve fibers and neurons. The common carotid artery of Hoxa3 homozygous mutants was absent or very short and therefore the internal and external carotid artery arose from a more proximal level than those of wild types. The baroreceptor innervation, however, persisted in the mutants, although vascular targets were changed. These results indicate that Hoxa3 gene is crucial for the formation of the common carotid artery and the null mutant mice are the first useful animal models to show that the third arch arteries on both sides specifically degenerate but the fourth and sixth arch arteries are normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3A, B. Fig. 4A–C.
Fig. 5A, B.
Fig. 6.

Similar content being viewed by others

References

  • Abboud FM, Thames MD (1983) Interaction of cardiovascular reflexes in circulatory control. In: Shepherd JT, Abboud FM (eds) Handbook of physiology, the cardiovascular system, vol 3. Am Physiol Soc, Maryland, pp 675–753

  • Adachi B (1928) Das Arteriensystem der Japaner, vol 1. Kyoto University, Kyoto

  • Bergwerff M, DeRuiter MC, Hall S, Poelmann RE, Gittenberger-de Groot AC (1999) Unique vascular morphology of the fourth aortic arches; possible implications for pathogenesis of type-B aortic arch interruption and anomalous right subclavian artery. Cardiovasc Res 44:185–196

    Article  CAS  PubMed  Google Scholar 

  • Bockman D, Redmond M, Kirby ML (1989) Alteration of early vascular development after ablation of cranial neural crest. Anat Rec 225:209–217

    CAS  PubMed  Google Scholar 

  • Brady R, Zaidi SIA, Mayer C, Katz DM (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19:2131–2142

    CAS  PubMed  Google Scholar 

  • Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350:473–479

    CAS  PubMed  Google Scholar 

  • Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H, Kuwaki T, Kumada M, Hammer RE, Yanagisawa M (1998) Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice. Development 125:813–824

    CAS  PubMed  Google Scholar 

  • Conway SJ, Henderson DJ, Copp AJ (1997) Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp 2H) mutant. Development 124:505–514

    CAS  PubMed  Google Scholar 

  • Cordier AC, Haumont SM (1980) Development of thymus, parathyroids, and ultimo-branchial bodies in NMRI and nude mice. Am J Anat 157:227–263

    CAS  PubMed  Google Scholar 

  • Feiner L, Webber AL, Brown CB, Lu MM, Jia L, Feinstein P, Mombaerts P, Epstein JA, Raper JA (2001) Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070

    CAS  PubMed  Google Scholar 

  • Franz T (1989) Persistent truncus arteriosus in the splotch mutant mouse. Anat Embryol 180:457–464

    CAS  PubMed  Google Scholar 

  • Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A (2001) Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nature Genet 27:293–298

    Article  CAS  PubMed  Google Scholar 

  • Hollinshead WH (1968) Anatomy for surgeons, vol 1. The head and neck. Harper & Row, Maryland

  • Iida K, Koseki H, Kakinuma H, Kato N, Mizutani-Koseki Y, Ohuchi H, Yoshioka H, Noji S, Kawamura K, Kataoka Y, Ueno F, Taniguchi M, Yoshida N, Sugiyama T, Miura N (1997) Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124:4627–4638

    CAS  PubMed  Google Scholar 

  • Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    CAS  PubMed  Google Scholar 

  • Kameda Y (1995) Evidence to support the distal vagal ganglion as the origin of C cells of the ultimobranchial gland in the chick. J Comp Neurol 359:1–14

    CAS  PubMed  Google Scholar 

  • Kameda Y, Nishimaki T, Takeichi M, Chisaka O (2002) Homeobox gene Hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev Biol 247:197–209

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanho M, Yagi T, Fujisawa H (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    CAS  PubMed  Google Scholar 

  • Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    CAS  PubMed  Google Scholar 

  • Kirby ML, Gale TF, Stewart DE (1983) Neural crest cells contribute to normal aorticopulmonary septation. Science 220:1059–1061

    CAS  PubMed  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    CAS  PubMed  Google Scholar 

  • Kurihara Y, Kurihara H, Oda H, Maemura K, Nagai R, Ishikawa T, Yazaki Y (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 96:293–300

    CAS  PubMed  Google Scholar 

  • Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM, Bradley A, Baldini A (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 40:379–383

    Article  Google Scholar 

  • MacKenzie-Stepner K, Witzel MA, Stringer DA, Lindsay WK, Munro IR, Hughes H (1987) Abnormal carotid arteries in the velocardiofacial syndrome: a report of three cases. Plast Rec Surg 80:347–351

    CAS  Google Scholar 

  • Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003

    CAS  PubMed  Google Scholar 

  • Manzanares M, Cordes S, Ariza-McNaughton L, Sadl V, Maruthainar K, Barsh G, Krumlauf R (1999) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126:759–769

    CAS  PubMed  Google Scholar 

  • Mendelsohn C, Lohnes D, Décimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II): multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771

    CAS  Google Scholar 

  • Netter FH (1969) Heart. The CIBA collection of medical illustrations, vol 5. In: Yonkmann FF (ed) CIBA, Summit, NJ

  • Scambler PJ (2000) The 22q11 deletion syndromes. Hum Mol Genet 9:2421–2426

    Article  CAS  PubMed  Google Scholar 

  • Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and hox gene plasticity. Nature Rev 1:116–124

    Article  CAS  Google Scholar 

  • Waldo KL, Kumiski D, Kirby ML (1996) Cardiac neural crest is essential for the persistence rather than the formation of an arch artery. Dev Dyn 205:281–292

    Article  CAS  PubMed  Google Scholar 

  • Waldo KL, Lo CW, Kirby ML (1999) Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 208:307–323

    CAS  PubMed  Google Scholar 

  • Watari N, Kameda Y, Takeichi M, Chisaka O (2001) Hoxa3 regulates integration of glossopharyngeal nerve precursor cells. Dev Biol 240:15–31

    Article  CAS  PubMed  Google Scholar 

  • Wilson DI, Burn J, Scambler P, Goodship J (1993) DiGeorge syndrome: part of CATCH 22. J Med Genet 30:852–856

    CAS  PubMed  Google Scholar 

  • Yanagisawa H, Yanagisawa M, Kapur RP, Richardson JA, Williams SC, Clouthier DE, de Wit D, Emoto N, Hammer RE (1998) Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development 125:825–836

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Kameda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kameda, Y., Watari-Goshima, N., Nishimaki, T. et al. Disruption of the Hoxa3 homeobox gene results in anomalies of the carotid artery system and the arterial baroreceptors. Cell Tissue Res 311, 343–352 (2003). https://doi.org/10.1007/s00441-002-0681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-002-0681-1

Keywords

Navigation