Skip to main content
Log in

The expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In the present study, we generated a systematic overview of the expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Using indirect immunofluorescence microscopy, we analyzed the spatial and temporal distribution of 11 important membrane and membrane-associated synaptic proteins (syntaxin 1/3, SNAP-25, synaptobrevin 2, synaptogyrin, synaptotagmin I, SV2A, SV2B, Rab3A, clathrin light chains, CSP and neuroligin I) during synaptogenesis. The temporospatial distribution of these synaptic proteins was "normalized" by the simultaneous visualization of the synaptic vesicle protein synaptophysin, which served as an internal reference protein. We found that expression of various synaptic membrane proteins started at different time points and changed progressively during development. At early stages of development synaptic vesicle membrane proteins at extrasynaptic locations did not always colocalize with synaptophysin, indicating that these proteins probably do not reside in the same transport vesicles. Despite a non-synchronized onset of protein expression, clustering and colocalization of all synaptic membrane proteins at ribbon synapses roughly occurred in the same time window (between day 4 after birth, P4, and P5). Thus, the basic synaptic membrane machinery is already present in ribbon synapses before the well-known complete morphological maturation of ribbon synapses between P7 and P12. We conclude that ribbon synapse formation is a multistep process in which the concerted recruitment of synaptic membrane proteins is a relatively early event and clearly not the final step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Ahnert-Hilger G, Kutuay U, Chahoud I, Rapoport T, Wiedenmann B (1996) Synaptobrevin is essential for secretion but not for the development of synaptic processes. Eur J Cell Biol 70:1–11

    CAS  PubMed  Google Scholar 

  • Baumert M, Fischer von Mollard G, Jahn R, Südhof TC (1993) Structure of the murine rab3A gene: correlation of genomic organization with antibody epitopes. Biochem J 293:157–163

    CAS  PubMed  Google Scholar 

  • Becher A, Drenckhahn A, Pahner I, Ahnert-Hilger G (1999a) The synaptophysin-synaptobrevin complex is developmentally upregulated in cultivated neurons but is absent in neuroendocrine cells. Eur J Cell Biol 78:650–656

    CAS  PubMed  Google Scholar 

  • Becher A, Drenckhahn A, Pahner I, Margittai M, Jahn R, Ahnert-Hilger G (1999b) The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J Neurosci 19:1922–1931

    CAS  PubMed  Google Scholar 

  • Bergmann M, Post A, Rittel A, Bechmann I, Nitsch R (1997) Expression of synaptophysin in sprouting neurons after entorhinal lesion in the rat. Exp Brain Res 117:80–86

    Article  CAS  PubMed  Google Scholar 

  • Brodsky FM, Parham P (1983) Polymorphism in clathrin light chains from different tissues. J Mol Biol 167:197–204

    CAS  PubMed  Google Scholar 

  • Brose N (1999) Synaptic cell adhesion proteins and synaptogenesis in the mammalian central nervous system. Naturwissenschaften 86:516–524

    Google Scholar 

  • Brose N, Petrenko AG, Südhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256:1021–1025

    CAS  PubMed  Google Scholar 

  • Buckley KM, Melikian HE, Provoda CJ, Waring MT (2000) Regulation of neuronal function by protein trafficking: a role for the endosomal pathway. J Physiol 525:11–19

    CAS  PubMed  Google Scholar 

  • Cameron P, Mundigl O, De Camilli P (1993) Traffic of synaptic vesicle proteins in polarized and nonpolarized cells. J Cell Sci 17:93–100

    Article  CAS  Google Scholar 

  • Catsicas S, Catsicas M, Keyser KT, Karten HJ, Wilson MC, Milner RJ (1992) Differential expression of the presynaptic protein SNAP-25 in mammalian retina. J Neurosci Res 33:1–9

    CAS  PubMed  Google Scholar 

  • Chapman ER, Blasi J, An S, Brose N, Johnston PA, Südhof TC, Jahn R (1996) Fatty acylation of synaptotagmin in PC12 cells and synaptosomes. Biochem Biophys Res Comm 225:326–332

    Article  CAS  PubMed  Google Scholar 

  • Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nature Rev Mol Cell Biol 2:98–106

    Article  CAS  Google Scholar 

  • Confaloni A, Lyckman AW, Moya KL (1997) Developmental shift of synaptic vesicle protein 2 from axons to terminals in the primary visual projection of the hamster. Neuroscience 77:1225–1236

    Article  CAS  PubMed  Google Scholar 

  • Crooks J, Okada M, Hendrickson AE (1995) Quantitative analysis of synaptogenesis in the inner plexiform layer of the macaque monkey retina. J Comp Neurol 360:349–362

    CAS  PubMed  Google Scholar 

  • Daly C, Ziff EB (1997) Post-transcriptional regulation of synaptic vesicle protein expression and the developmental control of synaptic vesicle formation. J Neurosci 17:2365–2375

    CAS  PubMed  Google Scholar 

  • Daoud R, Da Penta Berzaghi M, Siedler F, Hubener M, Stamm S (1999) Activity-dependent regulation of alternative splicing patterns in the rat brain. Eur J Neurosci 11:788–802

    Article  CAS  PubMed  Google Scholar 

  • Dechesne CJ, Kauff C, Stettler O, Tavitian B (1997) Rab3A immunolocalization in the mammalian vestibular end-organs during development and comparison with synaptophysin expression. Brain Res Dev Brain Res 99:103–111

    Article  CAS  PubMed  Google Scholar 

  • Dhingra NK, Ramamohan Y, Raju TR (1997) Developmental expression of synaptophysin, synapsin1 and syntaxin in the rat retina. Brain Res Dev Brain Res 102:267–273

    Article  CAS  PubMed  Google Scholar 

  • Dhingra NK, Reddy R, Govindaiah R, Hemavathy U, Raju TR, Ramamohan Y (2001) Synaptic development in semi-dissociated cultures of rat retina. Int J Dev Neurosci 19:533–540

    Article  CAS  PubMed  Google Scholar 

  • Dowling JE (1987) The retina: an approachable part of the brain. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Eybalin M, Renard N, Aure F, Saffieddine S (2002) Cysteine-string protein in inner hair cells: synaptic expression and upregulation at the onset of hearing. Eur J Neurosci 15:1409--1420

    Article  PubMed  Google Scholar 

  • Edelmann L, Hanson PI, Chapman ER, Jahn R (1995) Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machinery. EMBO J 14:224–231

    CAS  PubMed  Google Scholar 

  • Feany MB, Yee AG, Delvy ML, Buckley KM (1993) The synaptic vesicle proteins SV2, synaptotagmin and synaptophysin are sorted to separate cellular compartments. J Cell Biol 123:575–584

    CAS  PubMed  Google Scholar 

  • Fernandez-Chacon R, Südhof TC (1999) Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle. Annu Rev Physiol 61:753–776

    Article  CAS  PubMed  Google Scholar 

  • Galli T, Zahraoui A, Vaidyanathan VV, Raposo G, Tian JM Karin M, Niemann H, Louvard D (1998) A novel tetanus-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell 9:1437–1448

    CAS  PubMed  Google Scholar 

  • Garcia EP, McPherson PS, Chilcote TJ, Takei K, De Camilli P (1995) rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J Cell Biol 129:105–120

    CAS  PubMed  Google Scholar 

  • Georges P, Madigan MC, Provis JM (1999) Apoptosis during development of the human retina: relationship to foveal development and retinal synaptogenesis. J Comp Neurol 413:198–208

    Article  CAS  PubMed  Google Scholar 

  • Geppert M, Südhof TC (1998) RAB3 and Synaptotagmin: the yin and yang of synaptic membrane fusion. Ann Rev Neurosci 21:75–95

    Article  CAS  PubMed  Google Scholar 

  • Grabs D, Bergmann M, Schuster TH, Fox PA, Brich M, Gratzl M (1994) Differential expression of synaptophysin and synaptoporin during pre- and postnatal development of the rat hippocampal network. Eur J Neurosci 6:1765–1771

    CAS  PubMed  Google Scholar 

  • Greenlee MH, Swanson JJ, Simon JJ, Elmquist JK, Jacobson CD, Sakaguchi DS (1996) Postnatal development and the differential expression of presynaptic terminal-associated proteins in the developing retina of the Brazilian opossum, Monodelphis domestica. Brain Res Dev Brain Res 96:159–172

    CAS  PubMed  Google Scholar 

  • Greenlee MH, Roosevelt CB, Sakaguchi DS (2001) Differential localization of SNARE complex proteins SNAP-25, syntaxin, and VAMP during development of the mammalian retina. J Comp Neurol 430:306–320

    Article  CAS  PubMed  Google Scholar 

  • Greenlee MH, Wilson MC, Sakaguchi DS (2002) Expression of SNAP-25 during mammalian retinal development: thinking outside the synapse. Sem Cell Dev Biol 13:99–106

    Article  CAS  Google Scholar 

  • Grün G (1982) The development of the vertebrate retina: a comparative survey. In: Beck F, Hild W et al. (eds) Advances in anatomy, embryology and cell biology, vol 78. Springer, Berlin Heidelberg New York, pp 1–85

  • Gundersen CB, Mastrogiacomo A, Faull K, Umbach JA (1994) Extensive lipidation of a Torpedo cysteine string protein. J Biol Chem 269:19197–19199

    CAS  PubMed  Google Scholar 

  • Hendrickson AE (1996) Synaptic development in macaque monkey retina and its implication for other developmental sequences. Perspect Dev Neurobiol 3:195–201

    CAS  PubMed  Google Scholar 

  • Hepp R, Langley K (2001) SNAREs during development. Cell Tissue Res 305:247–253

    CAS  PubMed  Google Scholar 

  • Hepp R, Dupont JL, Aunis D, Langley K, Grant NJ (2001) NGF enhances depolarization effects on SNAP-25 expression: induction of SNAP-25b isoform. Neuroreport 12:673–677

    CAS  PubMed  Google Scholar 

  • Hering H, Kröger S (1996) Formation of synaptic specializations in the inner plexiform layer of the chick retina. J Comp Neurol 375:393–405

    Article  CAS  PubMed  Google Scholar 

  • Hermes B, Reuss S, Vollrath L (1992) Synaptic ribbons, spheres and intermediate structures in the developing rat retina. Int J Dev Neurosci 10:215–223

    CAS  PubMed  Google Scholar 

  • Hess DT, Slater TM, Wilson MC, Skene JH (1992) The 25 kDa synaptosomal-associated protein SNAP-25 is the major emthionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci 12:4634–4641

    CAS  PubMed  Google Scholar 

  • Hirling H, Steiner P, Chaperon C, Marsault R, Regazzi R, Catsicas S (2000) Syntaxin is a developmentally regulated SNARE involved in neurite outgrowth and endosomal trafficking. Eur J Neurosci 12:1913–1923

    CAS  PubMed  Google Scholar 

  • Igarashi M, Kozaki S, Terakawa S, Kawano S, Ide C, Komiya Y (1996) Growth cone collapse and inhibition of neurite growth by Botulinum neurotoxin C1: a t-SNARE is involved in axonal growth. J Cell Biol 134:205–215

    CAS  PubMed  Google Scholar 

  • Igarashi M, Tagaya M, Komiya Y (1997) The soluble N-ethylmaleimide-sensitive factor attached protein receptor complex in growth cones: molecular aspects of the axon terminal development. J Neurosci 17:1460–1470

    CAS  PubMed  Google Scholar 

  • Igarashi M, Ohyama A, Ohbayashi K, Kozaki S, Komiya Y (2000) The mechanism of neurotransmitter release in growth cones. J Neurosci Res 60:743–753

    Article  CAS  PubMed  Google Scholar 

  • Jackson AP (1992) Endocytosis in the brain: the role of the clathrin light chains. Biochem Soc Trans 20:653–655

    CAS  PubMed  Google Scholar 

  • Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    CAS  PubMed  Google Scholar 

  • Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A 82:4137–4141

    CAS  PubMed  Google Scholar 

  • Johnston PA, Cameron Pl, Stukenbrok H, Jahn R, de Camilli P, Südhof TC (1989) Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. EMBO J 8:2863–2872

    CAS  PubMed  Google Scholar 

  • Kelly RB, Grote E (1993) Protein targeting in neurons. Ann Rev Neurosci 16:95–127

    Article  CAS  PubMed  Google Scholar 

  • Lane SR, Liu Y (1997) Characterization of the palmitoylation domain of SNAP-25. J Neurochem 69:1864–1869

    CAS  PubMed  Google Scholar 

  • Lenzi D, von Gersdorff H (2001) Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines. Bioessays 23:831–840

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Ann Rev Cell Dev Biol 16:19–49

    Article  CAS  Google Scholar 

  • Littleton JT, Upton L, Kania A (1995) Immunocytochemical analysis of axonal outgrowth in synaptotagmin mutations. J Neurochem 65:32–40

    CAS  PubMed  Google Scholar 

  • Martinez-Arca S, Alberts P, Zahraoui A, Louvard D, Galli T (2000) Role of tetanus-insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J Cell Biol 149:889–900

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Arca S, Coco S, Mainguy G, Schenk U, Alberts P, Bouille P, Mezzina M, Prochiantz A, Matteoli M, Louvard D, Galli T (2001) A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci 21:3830–3838

    CAS  PubMed  Google Scholar 

  • Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA, Gundersen CB (1994) Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 263:981–982

    CAS  PubMed  Google Scholar 

  • Morgans CW, Brandstätter JH, Kellerman J, Betz H, Wässle H (1996) A SNARE complex containing syntaxin 3 is present in ribbon synapses of the retina. J Neurosci 16:6713–6721

    CAS  PubMed  Google Scholar 

  • Morihara T, Mizoguchi A, Takahashi M, Kozaki S, Tsujihara T, Kawano S, Shirasu M, Ohmukai T, Kitada M, Kimura K, Okajima S, Tamai K, Hirasawa Y, Ide C (1999) Distribution of synaptosomal-associated protein 25 in nerve growth cones and reduction of neurite outgrowth by botulinum neurotoxin A without altering growth cone morphology in dorsal root ganglion neurons and PC-12 cells. Neuroscience 91:695–706

    Article  CAS  PubMed  Google Scholar 

  • Mundigl O, de Camilli P (1994) Formation of synaptic vesicles. Curr Opin Cell Biol 6:561–567

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Rakic P (1985) Development of rhesus monkey retina. I Emergence of the inner plexiform layer and its synapses. J Comp Neurol 241:420–434

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Rakic P (1987a) Development of the rhesus monkey retina. II A three-dimensional analysis of sequences of synaptic combinations in the inner plexiform layer. J Comp Neurol 262:290–323

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Rakic P (1987b) Synaptogenesis in the primate retina proceeds from the ganglion cells towards the photoreceptors. Neurosci Res Suppl 6:S253--S258

    CAS  PubMed  Google Scholar 

  • Olney JW (1968a) An electron microscopic study of synapse formation, receptor outer segment development, and other aspects of developing mouse retina. Invest Ophthalmol 7:250–268

    CAS  PubMed  Google Scholar 

  • Olney JW (1968b) Centripetal sequence of appearance of receptor-bipolar synaptic structures in developing mouse retina. Nature 218:281–282

    CAS  PubMed  Google Scholar 

  • Osen-Sand A, Catsicas M, Staple J, Jones KA, Ayala J, Knowles J, Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in-vivo. Nature 364:445–448

    Google Scholar 

  • Osen-Sand A, Staple JK, Naldi E, Schiavo G, Rossetto O, Petitpierre S, Malgaroli A, Montecucco C, Catsicas S (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J Comp Neurol 367:222–234

    CAS  PubMed  Google Scholar 

  • Pley UM, Hill BL, Alibert C, Brodsky FM, Parham (1995) The interaction of calmodulin with clathrin-coated vesicles, triskelions and light chains. Localization of a binding site. J Biol Chem 270:2395–2402

    Article  CAS  PubMed  Google Scholar 

  • Redecker P (2000) Expression of synaptic vesicle trafficking proteins in the developing rat pineal gland. Cell Tissue Res 301:255–265

    CAS  PubMed  Google Scholar 

  • Rich KA, Zhan Y, Blanks JC (1997) Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. J Comp Neurol 388:47–63

    Article  CAS  PubMed  Google Scholar 

  • Rizo J, Südhof TC (2002) SNARES and munc18 in synaptic vesicle fusion. Nature Rev Neurosci 3:641–653

    CAS  Google Scholar 

  • Sarria JC, Catsicas S, Hornung JP, Hirling H (2002) Developmental and spatial expression pattern of syntaxin 13 in the mouse central nervous system. Cell Tissue Res 309:209–218

    CAS  PubMed  Google Scholar 

  • Sarthy PV, Bacon W (1985) Developmental expression of a synaptic vesicle-specific protein in the rat retina. Dev Biol 112:284–291

    CAS  PubMed  Google Scholar 

  • Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin I expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    CAS  PubMed  Google Scholar 

  • Scheller RH (1995) Membrane trafficking in the presynaptic terminal. Neuron 14:893–897

    Google Scholar 

  • Schmitz F, Drenckhahn D (1993) Distribution of actin in cone photoreceptor synapses. Histochemistry 100:35–40

    CAS  PubMed  Google Scholar 

  • Schmitz F, Königstorfer A, Südhof TC (2000) RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872

    CAS  PubMed  Google Scholar 

  • Schmitz F, Augustin I, Brose N (2001) The synaptic vesicle priming protein Munc13–1 is absent from tonically active ribbon synapses of the rat retina. Brain Res 895:258–263

    Article  CAS  PubMed  Google Scholar 

  • Schoch S, Deak F, Königstorfer A, Mozhayeva M, Sara Y, Südhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1015–1026

    Article  PubMed  Google Scholar 

  • Shirasu M, Kimura K, Kataoka M, Takahashi M, Okajina S, Kawaguchi S, Hiragawa Y, Ide C, Mizoguchi A (2000) VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells. Neurosci Res 37:265–275

    Article  CAS  PubMed  Google Scholar 

  • Song JY, Ichtchenko K, Südhof TC, Brose N (1999) Neuroligin I is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A 96:1100–1105

    Article  CAS  PubMed  Google Scholar 

  • Stamm S, Casper D, Hanson V, Helfman DM (1999) Regulation of the neuron-specific exon of clathrin light chain B. Brain Res Mol Brain Res 64:108–118

    Article  CAS  PubMed  Google Scholar 

  • Stenius K, Janz R, Südhof TC, Jahn R (1995) Structure of synaptogyrin (p29) defines novel synaptic vesicle protein. J Cell Biol 131:1801–1809

    CAS  PubMed  Google Scholar 

  • Sterling P (1998) "Retina" In: Shepherd GM (ed) The synaptic organization of the brain, 4th edn. Oxford University Press, Oxford

  • Stettler O, Moya KL, Zahraoui A, Tavitian B (1994) Developmental changes in the localization of the synaptic vesicle protein rab3A in rat brain. Neuroscience 62:587–600

    CAS  PubMed  Google Scholar 

  • Stettler O, Tavitian B, Moya KL (1996) Differential synaptic vesicle protein expression in the barrel field of developing cortex. J Comp Neurol 375:321–332

    CAS  PubMed  Google Scholar 

  • Südhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    CAS  PubMed  Google Scholar 

  • Südhof TC (2000) The synaptic vesicle cycle revisited. Neuron 28:317–320

    CAS  PubMed  Google Scholar 

  • Tavitian B, Moya KL, Doignon I, Stettler O (1995) Differential effect of functional olfactory deprivation on synaptic vesicle proteins in rat olfactory bulb. Neuroreport 6:1449–1453

    CAS  PubMed  Google Scholar 

  • Tobaben S, Thakur P, Fernandez-Chacon R, Südhof TC, Rettig J, Stahl B (2001) A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31:987–999

    CAS  PubMed  Google Scholar 

  • Umbach JA, Gundersen CB (1997) Evidence that cysteine string protein regulates an early Stepp in the Ca2+-dependent secretion of neurotransmitter at Drosophila neuromuscular junctions. J Neurosci 17:7203–7209

    CAS  PubMed  Google Scholar 

  • Umbach JA, Zinsmaier KE, Eberle KK, Buchner E, Benzer S, Gundersen CB (1994) Presynaptic dysfunction in Drosophila CSP mutants. Neuron 13:899–907

    CAS  PubMed  Google Scholar 

  • Veit M, Söllner TH, Rothman JE (1996) Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett 385:119–123

    Article  CAS  PubMed  Google Scholar 

  • Veit M, Becher A, Ahnert-Hilger G (2000) Synaptobrevin is palmitoylated in synaptic vesicles prepared from adult, but not from embryonic brain. Mol Cell Neurosci 15:408–416

    Article  CAS  PubMed  Google Scholar 

  • von Gersdorff H (2001) Synaptic ribbons, versatile signal transducers. Neuron 29:7–10

    PubMed  Google Scholar 

  • von Gersdorff H, Matthews G (1999) Electrophysiology of synaptic vesicle cycling. Annu Rev Physiol 61:725–752

    Article  PubMed  Google Scholar 

  • von Kriegstein K, Schmitz F, Link E, Südhof TC (1999) Distribution of synaptic vesicle proteins in the mammalian retina identifies obligatory and facultative components of ribbon synapses. Eur J Neurosci 11:1335–1348

    Article  PubMed  Google Scholar 

  • Wagner HJ (1997) Presynaptic bodies ("ribbons"): from ultrastructural observations to molecular perspectives. Cell Tissue Res 287:435–446

    Article  CAS  PubMed  Google Scholar 

  • Walch-Solimena C, Blasi J, Edelmann L, Chapmann ER, von Mollard GF, Jahn R (1995) The t-SNARE syntaxin and SNAP-25 are present on organelles that participate in synaptic vesicle recycling. J Cell Biol 128:637–645

    CAS  PubMed  Google Scholar 

  • Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G, Molnar Z, Becher MW, Valenzuela CF, Partridge LD, Wilson MC (2001) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nature Neurosci 5:19–26

    Google Scholar 

  • Wong DH, Ignatius MJ, Parosky G, Parham P, Trojanowski JQ, Brodsky FM (1990) Neuron-specific expression of high-molecular-weight clathrin light chain. J Neurosci 10:3025–3031

    CAS  PubMed  Google Scholar 

  • Young SH, Poo MM (1983) Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 305:634–637

    CAS  PubMed  Google Scholar 

  • Zakharenko S, Chang S, O'Donoghue M, Popov SV (1999) Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis. J Cell Biol 144:507–518

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. Thomas C. Südhof (Center for Basic Neuroscience; University of Texas Southwestern Medical Center at Dallas and Howard Hughes Medical Institute) for continuous support and advice. We thank Profs. R. Jahn, T.C. Südhof and N. Brose for their kind gift of monoclonal and polyclonal antibodies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Kriegstein, K., Schmitz, F. The expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Cell Tissue Res 311, 159–173 (2003). https://doi.org/10.1007/s00441-002-0674-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-002-0674-0

Keywords

Navigation