Skip to main content
Log in

How to determine if a random graph with a fixed degree sequence has a giant component

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

For a fixed degree sequence \({\mathcal {D}}=(d_1,\ldots ,d_n)\), let \(G({\mathcal {D}})\) be a uniformly chosen (simple) graph on \(\{1,\ldots ,n\}\) where the vertex i has degree \(d_i\). In this paper we determine whether \(G({\mathcal {D}})\) has a giant component with high probability, essentially imposing no conditions on \({\mathcal {D}}\). We simply insist that the sum of the degrees in \({\mathcal {D}}\) which are not 2 is at least \(\lambda (n)\) for some function \(\lambda \) going to infinity with n. This is a relatively minor technical condition, and when \({\mathcal {D}}\) does not satisfy it, both the probability that \(G({\mathcal {D}})\) has a giant component and the probability that \(G({\mathcal {D}})\) has no giant component are bounded away from 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. A degree sequence is feasible if there is a graph with the given degree sequence.

  2. A component is cyclic if it is a cycle and non-cyclic if it is not.

  3. Here and throughout the paper, when we say we suppress a vertex u of degree 2, this means we delete u and we add an edge between its neighbours. Observe that this may create loops and multiple edges, so the resulting object might not be a simple graph.

  4. As it is standard, we use order and size to denote the number of vertices and the number of edges of a graph, respectively.

  5. Random graphs with special degree sequences had been studied earlier (see, e.g. [22, 33]).

  6. Note that some of these results give a more precise description on the order of the largest component. Our results only deal with the existential question.

  7. Their result gives convergence in probability of the proportion of vertices in the giant component and they also consider the case \(Q(\mathfrak {D})=0\).

  8. They also proved some results on the distribution of the order of the largest component and also consider the case \(Q(\mathfrak {D})=0\).

  9. Observe that \(X_\ell \) follows a hypergeometric distribution.

  10. In fact, the Molloy–Reed result does not discuss the case \(Q(\mathfrak {D})=0\).

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (STOC). ACM, pp. 171–180 (2000)

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollobás, B., Riordan, O.: An old approach to the giant component problem. J. Comb. Theory Ser. B 113, 236–260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourassa, V., Holt, F.: SWAN: small-world wide area networks. In: Proceedings of International Conference on Advances in Infrastructures (SSGRR 2003w), L’Aquila, Italy (2003)

  7. Cooper, C.: The cores of random hypergraphs with a given degree sequence. Random Struct. Algorithms 25, 353–375 (2004)

    Article  MathSciNet  Google Scholar 

  8. Cooper, C., Dyer, M., Greenhill, C.: Sampling regular graphs and a peer-to-peer network. Comb. Probab. Comput. 16, 557–593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29, 251–262 (1999)

    Article  MATH  Google Scholar 

  10. Fernholz, D., Ramachandran, V.: Cores and connectivity in sparse random graphs. Technical report TR-04-13, The University of Texas at Austin, Department of Computer Sciences (2004)

  11. Fernholz, D., Ramachandran, V.: The diameter of sparse random graphs. Random Struct. Algorithms 31, 482–516 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  13. Fountoulakis, N.: Percolation on sparse random graphs with given degree sequence. Internet Math. 4, 329–356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fountoulakis, N., Reed, B.: A general critical condition for the emergence of a giant component in random graphs with given degrees. Electron. Notes Discrete Math. 34, 639–645 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Greenhill, C.: The switch Markov chain for sampling irregular graphs. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1564–1572. SIAM (2015)

  16. Hatami, H., Molloy, M.: The scaling window for a random graph with a given degree sequence. Random Struct. Algorithms 41, 99–123 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Janson, S.: On percolation in random graphs with given vertex degrees. Electron. J. Probab. 14, 87–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Janson, S., Luczak, M.J.: A new approach to the giant component problem. Random Struct. Algorithms 34, 197–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Janson, S., Luczak, M.J.: A simple solution to the k-core problem. Random Struct. Algorithms 30, 50–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Joseph, A.: The component sizes of a critical random graph with pre-described degree sequence. Ann. Appl. Probab. 24, 2560–2594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kang, M., Seierstad, T.G.: The critical phase for random graphs with a given degree sequence. Comb. Probab. Comput. 17, 67–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luczak, T.: Sparse random graphs with a given degree sequence. In: Proceedings of the Symposium on Random Graphs, Poznan, pp. 165–182 (1989)

  23. McKay, B.D.: Subgraphs of random graphs with specified degrees. Congr. Numer. 33, 213–223 (1981)

  24. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Molloy, M., Reed, B.: The size of the giant component of a random graph with a given degree sequence. Comb. Probab. Comput. 7, 295–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, vol. 23. Springer, Berlin (2013)

    MATH  Google Scholar 

  27. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. 99(Suppl 1), 2566–2572 (2002)

    Article  MATH  Google Scholar 

  29. Petersen, J.: Die Theorie der regulären graphs. Acta Math. 15, 193–220 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  30. Riordan, O.: The phase transition in the configuration model. Comb. Probab. Comput. 21, 265–299 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. van den Esker, H., van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Distances in random graphs with infinite mean degrees. Extremes 8(3), 111–141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: Distances in random graphs with finite variance degrees. Random Struct. Algorithms 27, 76–123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wormald, N.C.: Some problems in the enumeration of labelled graphs. Doctoral thesis (1980)

  34. Wormald, N.C.: Models of random regular graphs, Surveys in combinatorics (Canterbury). London Mathematical Society Lecture Note Series, vol. 267, pp. 239–298. Cambridge University Press, Cambridge (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillem Perarnau.

Additional information

Felix Joos was supported by the EPSRC, Grant No. EP/M009408/1.

Guillem Perarnau was supported by the European Research Council, ERC Grant Agreement No. 306349.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joos, F., Perarnau, G., Rautenbach, D. et al. How to determine if a random graph with a fixed degree sequence has a giant component. Probab. Theory Relat. Fields 170, 263–310 (2018). https://doi.org/10.1007/s00440-017-0757-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0757-1

Mathematics Subject Classification

Navigation