Abstract.
To measure the dependence between a real-valued random variable X and a σ-algebra , we consider four distances between the conditional distribution function of X given
and the distribution function of X. The coefficients obtained are weaker than the corresponding mixing coefficients and may be computed in many situations. In particular, we show that they are well adapted to functions of mixing sequences, iterated random functions and dynamical systems. Starting from a new covariance inequality, we study the mean integrated square error for estimating the unknown marginal density of a stationary sequence. We obtain optimal rates for kernel estimators as well as projection estimators on a well localized basis, under a minimal condition on the coefficients. Using recent results, we show that our coefficients may be also used to obtain various exponential inequalities, a concentration inequality for Lipschitz functions, and a Berry-Esseen type inequality.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Andrews, D.W.K.: Nonstrong mixing autoregressive processes. J. Appl. Probab. 21, 930–934 (1984)
Barbour, A.D., Gerrard, R.M., Reinert, G.: Iterates of expanding maps. Probab. Theory Relat. Fields 116, 151–180 (2000)
Barron, A., Birgé, L., Massart, P.: Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113, 301–413 (1999)
Berbee, H.C.P.: Random walks with stationary increments and renewal theory. Math. Cent. Tracts. Amsterdam, 1979
Billingsley, P.: (1968) Convergence of probability measures. Wiley, New-York
Borovkova, S., Burton, R., Dehling, H.: Limit theorems for functionals of mixing processes with application to U-statistics and dimension estimation. Trans. Amer. Math. Soc. 353, 4261–4318 (2001)
Bradley, R.C.: Approximations theorems for strongly mixing random variables. Michigan Math. J. 30, 69–81 (1983)
Bradley, R.C.: Introduction to Strong Mixing Conditions, Volume 1. Technical Report, Department of Mathematics, I. U. Bloomington, 2002
Broise, A.: . Transformations dilatantes de l’intervalle et théorèmes limites. Études spectrales d’opérateurs de transfert et applications. Astérisque 238, 1–109 (1996)
Castaing, C., Raynaud de Fitte, P., Valadier, M.: Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory. Kluwer Academic Publishers, Dordrecht, 2004
Collet, P., Martinez, S., Schmitt, B.: Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory. Relat. Fields 123, 301–322 (2002)
Deddens, J., Peligrad, M., Yang, T.: (1987) On strong consistency of kernel estimators under dependence assumptions. Mathematical statistics and probability theory Vol. B 33–41, (Bad Tatzmannsdorf, 1986) Reidel, Dordrecht
Dedecker, J., Doukhan, P.: . A new covariance inequality and applications. Stochastic Process. Appl. 106, 63–80 (2003)
Dedecker, J., Prieur, C.: (2003) Coupling for τ-dependent sequences and applications. Preprint LSP 2003-02. Université Paul Sabatier, Toulouse. Accepted for publication in J. Theoret. Probab.
Dedecker, J., Prieur, C.: Couplage pour la distance minimale. C. R. Acad. Sci. Paris, Ser I 338, 805–808 (2004)
Dedecker, J., Rio, E.: On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36, 1–34 (2000)
Dehling, H.: A note on a theorem of Berkes and Philipp. Z. Wahrsch. Verw. Gebiete 62, 39–42 (1983)
Delyon, B.: (1990) Limit theorems for mixing processes. Tech. Report 546 IRISA, Rennes I
DeVore, R.A., Lorentz, G.G.: Constructive approximation. Springer, Berlin, Heidelberg, New York, 1993
Diaconis, P., Freedman, D.: Iterated random functions. SIAM Rev. 41, 45–76 (1999)
Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970)
Doukhan, P.: Mixing: properties and examples. Lecture Notes in Statist. 85, Springer-Verlag, 1994
Doukhan, P., Louhichi, S.: A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84, 313–342 (1999)
Dudley, R.M.: Real analysis and probability. Wadworsth Inc., Belmont, California, 1989
Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180, 119–140 (1982)
Ibragimov, I.A.: Some limit theorems for stationary processes. Theory Probab. Appl. 7, 349–382 (1962)
Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186, 481–488 (1974)
Ledoux, M., Talagrand, M.: Probability in Banach spaces. Springer, New-York, 1991
Major, P.: On the invariance principle for sums of identically distributed random variables. J. Multivariate Anal. 8, 487–517 (1978)
Merlevède, F., Peligrad, M.: (2002) On the coupling of dependent random variables and applications. Empirical process techniques for dependent data. 171–193 Birkhäuser
Morita, T.: Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition. J. Math. Soc. Japan 46, 309–343 (1994)
Peligrad, M.: Some remarks on coupling of dependent random variables. Stat. Prob. Letters 60, 201–209 (2002)
Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc 161, (1975)
Prieur, C.: Density Estimation For One-Dimensional Dynamical Systems. ESAIM, Probab. & Statist. http://www.emath.fr/ps 5, 51–76 (2001)
Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, Volume 1: Theory. Springer. Berlin, Heidelberg, New-York, 1998
Rio, E.: The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23, 1188–1203 (1995)
Rio, E.: Sur le théorème de Berry-Esseen pour les suites faiblement dépendantes. Probab. Theory Relat. Fields 104, 255–282 (1996)
Rio, E.: Théorie asymptotique des processus aléatoires faiblement dépendants. Collection Mathématiques & Applications 31, Springer, Berlin, (2000a)
Rio, E.: Inégalités de Hoeffding pour les fonctions lipschitziennes de suites dépendantes. C. R. Acad. Sci. Paris Série I 330, 905–908 (2000b)
Rosenblatt, M.: . A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U. S. A. 42, 43–47 (1956)
Rozanov, Y.A., Volkonskii, V.A.: Some limit theorems for random functions I. Theory Probab. Appl. 4, 178–197 (1959)
van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes. Springer, Berlin, 1996
Viennet, G.: Inequalities for absolutely regular sequences: application to density estimation. Probab. Theory Relat. Fields 107, 467–492 (1997)
Yu, H.: A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences. Probab. Theory Relat. Fields 95, 357–370 (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
Mathematics Subject Classification (2000): 62G07, 60J10, 60E15, 37C30
Rights and permissions
About this article
Cite this article
Dedecker, J., Prieur, C. New dependence coefficients. Examples and applications to statistics. Probab. Theory Relat. Fields 132, 203–236 (2005). https://doi.org/10.1007/s00440-004-0394-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00440-004-0394-3