Skip to main content

Advertisement

Log in

Angiopoietin receptor TEK interacts with CYP1B1 in primary congenital glaucoma

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Primary congenital glaucoma (PCG) is a severe autosomal recessive ocular disorder associated with considerable clinical and genetic heterogeneity. Recently, rare heterozygous alleles in the angiopoietin receptor-encoding gene TEK were implicated in PCG. We undertook this study to ascertain the second mutant allele in a large cohort (n = 337) of autosomal recessive PCG cases that carried heterozygous TEK mutations. Our investigations revealed 12 rare heterozygous missense mutations in TEK by targeted sequencing. Interestingly, four of these TEK mutations (p.E103D, p.I148T, p.Q214P, and p.G743A) co-occurred with three heterozygous mutations in another major PCG gene CYP1B1 (p.A115P, p.E229K, and p.R368H) in five families. The parents of these probands harbored either of the heterozygous TEK or CYP1B1 alleles and were asymptomatic, indicating a potential digenic mode of inheritance. Furthermore, we ascertained the interactions of TEK and CYP1B1 by co-transfection and pull-down assays in HEK293 cells. Ligand responsiveness of the wild-type and mutant TEK proteins was assessed in HUVECs using immunofluorescence analysis. We observed that recombinant TEK and CYP1B1 proteins interact with each other, while the disease-associated allelic combinations of TEK (p.E103D)::CYP1B1 (p.A115P), TEK (p.Q214P)::CYP1B1 (p.E229K), and TEK (p.I148T)::CYP1B1 (p.R368H) exhibit perturbed interaction. The mutations also diminished the ability of TEK to respond to ligand stimulation, indicating perturbed TEK signaling. Overall, our data suggest that interaction of TEK and CYP1B1 contributes to PCG pathogenesis and argue that TEK-CYP1B1 may perform overlapping as well as distinct functions in manifesting the disease etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA, Hejtmancik JF, Khan SN, Firasat S, Shires M, Gilmour DF, Towns K, Murphy AL, Azmanov D, Tournev I, Cherninkova S, Jafri H, Raashid Y, Toomes C, Craig J, Mackey DA, Kalaydjieva L, Riazuddin S, Inglehearn CF (2009) Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet 84:664–671. doi:10.1016/j.ajhg.2009.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DR (1981) The development of the trabecular meshwork and its abnormality in primary infantile glaucoma. Trans Am Ophthalmol Soc 79:458–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Chakraborty S, Chakraborty A, Chakrabarti S, Ray K (2016) Functional and structural analyses of CYP1B1 variants linked to congenital and adult-onset glaucoma to investigate the molecular basis of these diseases. PLoS One 11:e0156252. doi:10.1371/journal.pone.0156252

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. doi:10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  • Barton WA, Tzvetkova-Robev D, Miranda EP, Kolev MV, Rajashankar KR, Himanen JP, Nikolov DB (2006) Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nat Struct Mol Biol 13:524–532. doi:10.1038/nsmb1101

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti S, Kaur K, Kaur I, Mandal AK, Parikh RS, Thomas R, Majumder PP (2006) Globally, CYP1B1 mutations in primary congenital glaucoma are strongly structured by geographic and haplotype backgrounds. Invest Ophthalmol Vis Sci 47:43–47. doi:10.1167/iovs.05-0912

    Article  PubMed  Google Scholar 

  • Chakrabarti S, Devi KR, Komatireddy S, Kaur K, Parikh RS, Mandal AK, Chandrasekhar G, Thomas R (2007) Glaucoma-associated CYP1B1 mutations share similar haplotype backgrounds in POAG and PACG phenotypes. Invest Ophthalmol Vis Sci 48:5439–5444. doi:10.1167/iovs.07-0629

    Article  PubMed  Google Scholar 

  • Chakrabarti S, Kaur K, Rao KN, Mandal AK, Kaur I, Parikh RS, Thomas R (2009) The transcription factor gene FOXC1 exhibits a limited role in primary congenital glaucoma. Invest Ophthalmol Vis Sci 50:75–83. doi:10.1167/iovs.08-2253

    Article  PubMed  Google Scholar 

  • Dandona L, Williams JD, Williams BC, Rao GN (1998) Population-based assessment of childhood blindness in southern India. Arch Ophthalmol 116:545–546

    CAS  PubMed  Google Scholar 

  • deLuise VP, Anderson DR (1983) Primary infantile glaucoma (congenital glaucoma). Surv Ophthalmol 28:1–19

    Article  CAS  PubMed  Google Scholar 

  • Dharmaraj N, Reddy A, Kiran V, Mandal A, Panicker S, Chakrabarti S (2003) PAX6 gene mutations and genotype-phenotype correlations in sporadic cases of aniridia from India. Ophthalmic Genet 24:161–165

    Article  PubMed  Google Scholar 

  • Dimasi DP, Hewitt AW, Straga T, Pater J, MacKinnon JR, Elder JE, Casey T, Mackey DA, Craig JE (2007) Prevalence of CYP1B1 mutations in Australian patients with primary congenital glaucoma. Clin Genet 72:255–260. doi:10.1111/j.1399-0004.2007.00864.x

    Article  CAS  PubMed  Google Scholar 

  • Gould DB, John SW (2002) Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet 11:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara K, Berson EL, Dryja TP (1994) Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264:1604–1608

    Article  CAS  PubMed  Google Scholar 

  • Karpinich NO, Caron KM (2014) Schlemm’s canal: more than meets the eye, lymphatics in disguise. J Clin Invest 124:3701–3703. doi:10.1172/JCI77507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur K, Reddy AB, Mukhopadhyay A, Mandal AK, Hasnain SE, Ray K, Thomas R, Balasubramanian D, Chakrabarti S (2005) Myocilin gene implicated in primary congenital glaucoma. Clin Genet 67:335–340. doi:10.1111/j.1399-0004.2005.00411.x

    Article  CAS  PubMed  Google Scholar 

  • Khan AO (2011) Genetics of primary glaucoma. Curr Opin Ophthalmol 22:347–355. doi:10.1097/ICU.0b013e32834922d2

    Article  PubMed  Google Scholar 

  • Khanna H, Davis EE, Murga-Zamalloa CA, Estrada-Cuzcano A, Lopez I, den Hollander AI, Zonneveld MN, Othman MI, Waseem N, Chakarova CF, Maubaret C, Diaz-Font A, MacDonald I, Muzny DM, Wheeler DA, Morgan M, Lewis LR, Logan CV, Tan PL, Beer MA, Inglehearn CF, Lewis RA, Jacobson SG, Bergmann C, Beales PL, Attie-Bitach T, Johnson CA, Otto EA, Bhattacharya SS, Hildebrandt F, Gibbs RA, Koenekoop RK, Swaroop A, Katsanis N (2009) A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet 41:739–745. doi:10.1038/ng.366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna RC, Murthy GV, Marmamula S, Mettla AL, Giridhar P, Banerjee S, Shekhar K, Chakrabarti S, Gilbert C, Rao GN, Andhra Pradesh Eye Disease Study G (2016) Longitudinal Andhra Pradesh Eye Disease Study: rationale, study design and research methodology. Clin Exp Ophthalmol 44:95–105. doi:10.1111/ceo.12633

    Article  PubMed  Google Scholar 

  • Komatireddy S, Chakrabarti S, Mandal AK, Reddy AB, Sampath S, Panicker SG, Balasubramanian D (2003) Mutation spectrum of FOXC1 and clinical genetic heterogeneity of Axenfeld-Rieger anomaly in India. Mol Vis 9:43–48

    CAS  PubMed  Google Scholar 

  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, Exome Aggregation C (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291. doi:10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhou Y, Du L, Wei M, Chen X (2011) Overview of Cytochrome P450 1B1 gene mutations in patients with primary congenital glaucoma. Exp Eye Res 93:572–579. doi:10.1016/j.exer.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  • Libby RT, Gould DB, Anderson MG, John SW (2005) Complex genetics of glaucoma susceptibility. Annu Rev Genomics Hum Genet 6:15–44. doi:10.1146/annurev.genom.6.080604.162209

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Allingham RR (2011) Molecular genetics in glaucoma. Exp Eye Res 93:331–339. doi:10.1016/j.exer.2011.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida CR, Everett S, Ortiz de Montellano PR (2013) Specificity determinants of CYP1B1 estradiol hydroxylation. Mol Pharmacol 84:451–458. doi:10.1124/mol.113.087700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palenski TL, Gurel Z, Sorenson CM, Hankenson KD, Sheibani N (2013) Cyp1B1 expression promotes angiogenesis by suppressing NF-kappaB activity. Am J Physiol Cell Physiol 305:C1170–C1184. doi:10.1152/ajpcell.00139.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plasilova M, Stoilov I, Sarfarazi M, Kadasi L, Ferakova E, Ferak V (1999) Identification of a single ancestral CYP1B1 mutation in Slovak Gypsies (Roms) affected with primary congenital glaucoma. J Med Genet 36:290–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KN, Zhang W, Li L, Anand M, Khanna H (2016) Prenylated retinal ciliopathy protein RPGR interacts with PDE6delta and regulates ciliary localization of Joubert syndrome-associated protein INPP5E. Hum Mol Genet 25:4533–4545

    CAS  PubMed  Google Scholar 

  • Sarfarazi M, Stoilov I (2000) Molecular genetics of primary congenital glaucoma. Eye (Lond) 14(Pt 3B):422–428. doi:10.1038/eye.2000.126

    Article  Google Scholar 

  • Schaffer AA (2013) Digenic inheritance in medical genetics. J Med Genet 50:641–652. doi:10.1136/jmedgenet-2013-101713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K, Yamaguchi S, Feng L, Limviphuvadh V, Whisenhunt KN, Maurer-Stroh S, Yanovitch TL, Kalaydjieva L, Azmanov DN, Finzi S, Mauri L, Javadiyan S, Souzeau E, Zhou T, Hewitt AW, Kloss B, Burdon KP, Mackey DA, Allen KF, Ruddle JB, Lim SH, Rozen S, Tran-Viet KN, Liu X, John S, Wiggs JL, Pasutto F, Craig JE, Jin J, Quaggin SE, Young TL (2016) Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest 126:2575–2587. doi:10.1172/JCI85830

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoilov I, Akarsu AN, Sarfarazi M (1997) Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 6:641–647

    Article  CAS  PubMed  Google Scholar 

  • Tamm ER (2009) The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 88:648–655. doi:10.1016/j.exer.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  • Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A, Sung HK, Onay T, Chen H, Yamaguchi S, Economides AN, Flenniken A, Gale NW, Hong YK, Fawzi A, Liu X, Kume T, Quaggin SE (2014) A lymphatic defect causes ocular hypertension and glaucoma in mice. J Clin Invest 124:4320–4324. doi:10.1172/JCI77162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasiliou V, Gonzalez FJ (2008) Role of CYP1B1 in glaucoma. Annu Rev Pharmacol Toxicol 48:333–358. doi:10.1146/annurev.pharmtox.48.061807.154729

    Article  CAS  PubMed  Google Scholar 

  • Vincent AL, Billingsley G, Buys Y, Levin AV, Priston M, Trope G, Williams-Lyn D, Heon E (2002) Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet 70:448–460. doi:10.1086/338709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Wiggs JL (2014) Common and rare genetic risk factors for glaucoma. Cold Spring Harb Perspect Med 4:a017244. doi:10.1101/cshperspect.a017244

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the PCG, POAG, and anterior segment dysgenesis patients and their families, and the normal volunteers for their participation in this study. The authors acknowledge the help of Drs. Ravi Thomas, Rajul Parikh, Harsha L Rao, and Garudadri C Sekhar for the diagnosis of some patients and controls; Drs. Aramati BM Reddy, Kiranpreet Kaur, Ratnakar Tripathi, and Mr. Chandan S Appikonda for sample collection; and Dr. Prathap Naidu and Mr. Hersh Parikh for the technical help. The authors would like to thank the Exome Aggregation Consortium and the groups that provided exome variant data for comparison. A full list of contributing groups can be found at http://exac.broadinstitute.org/about.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhabrata Chakrabarti.

Ethics declarations

Funding

This work was supported by grants from the Department of Biotechnology, Government of India (BT/01/COE/06/02/10) to SC, and the National Eye Institute, NIH (EY022372) to HK. GP was supported by a fellowship from the Council of Scientific and Industrial Research, Government of India.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

All the molecular genetic, biochemical, and cellular data generated during this study are included in this manuscript and its supplementary files. However, the patients’ clinical data are confidential and will be available from the corresponding author on request.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5596 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabra, M., Zhang, W., Rathi, S. et al. Angiopoietin receptor TEK interacts with CYP1B1 in primary congenital glaucoma. Hum Genet 136, 941–949 (2017). https://doi.org/10.1007/s00439-017-1823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-017-1823-6

Navigation