Skip to main content
Log in

A new method for estimating effect size distribution and heritability from genome-wide association summary results

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Accurately estimating the distribution and heritability of SNP effects across the genome could help explain the mystery of missing heritability. In this study, we propose a novel statistical method for estimating the distribution and heritability of SNP effects from genome-wide association studies (GWASs), and compare its performance to several existing methods using both simulations and real data. Specifically, we study the full range of GWAS summary results and link observed p values and unobserved effect sizes by (non-central) Chi-square distribution. By modeling the observed full set of association signals using a multinomial distribution, we build a likelihood function of SNP effect sizes using parametric and non-parametric maximum likelihood frameworks. Simulation studies show that the proposed method can accurately estimate effect sizes and the number of associated SNPs. As real applications, we analyze publicly available GWAS summary results for height, body mass index (BMI), and bone mineral density (BMD). Our analyses show that there are over 10,000 SNPs that might be associated with height, and the total heritability attributable to these SNPs exceeds 70 %. The heritabilities for BMI and BMD are ~10 and ~15 %, respectively. The results indicate that the proposed method has the potential to improve the accuracy of estimates of heritability and effect size for common SNPs in large-scale GWAS meta-analyses. These improved estimates may contribute to an enhanced understanding of the genetic basis of complex traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L (2013) Finding the sources of missing heritability in a yeast cross. Nature 494:234–237. doi:10.1038/nature11867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price AL, Neale BM (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47:291–295. doi:10.1038/ng.3211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, Gonzalez-Macias J, Kahonen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren O, Lorenc RS, Marc J, Mellstrom D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501. doi:10.1038/ng.2249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gauderman WJ (2003) Candidate gene association analysis for a quantitative trait, using parent-offspring trios. Genet Epidemiol 25:327–338. doi:10.1002/gepi.10262

    Article  PubMed  Google Scholar 

  • Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145. doi:10.1038/nrg3118

    Article  PubMed Central  Google Scholar 

  • Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, Gregersen PK, Worthington J, Klareskog L, Raychaudhuri S, Plenge RM, Pasaniuc B, Price AL (2013) Quantifying missing heritability at known GWAS loci. PLoS Genet 9:e1003993. doi:10.1371/journal.pgen.1003993

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. doi:10.1002/sim.1186

    Article  PubMed  Google Scholar 

  • Ioannidis JP (2008) Why most discovered true associations are inflated. Epidemiology 19:640–648. doi:10.1097/EDE.0b013e31818131e7

    Article  PubMed  Google Scholar 

  • Kutalik Z, Whittaker J, Waterworth D, Beckmann JS, Bergmann S (2011) Novel method to estimate the phenotypic variation explained by genome-wide association studies reveals large fraction of the missing heritability. Genet Epidemiol 35:341–349. doi:10.1002/gepi.20582

    Article  PubMed  Google Scholar 

  • Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segre AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Magi R, Pastinen T, Liang L, Heid IM, Luan J, Thorleifsson G, Winkler TW, Goddard ME, Sin Lo K, Palmer C, Workalemahu T, Aulchenko YS, Johansson A, Zillikens MC, Feitosa MF, Esko T, Johnson T, Ketkar S, Kraft P, Mangino M, Prokopenko I, Absher D, Albrecht E, Ernst F, Glazer NL, Hayward C, Hottenga JJ, Jacobs KB, Knowles JW, Kutalik Z, Monda KL, Polasek O, Preuss M, Rayner NW, Robertson NR, Steinthorsdottir V, Tyrer JP, Voight BF, Wiklund F, Xu J, Zhao JH, Nyholt DR, Pellikka N, Perola M, Perry JR, Surakka I, Tammesoo ML, Altmaier EL, Amin N, Aspelund T, Bhangale T, Boucher G, Chasman DI, Chen C, Coin L, Cooper MN, Dixon AL, Gibson Q, Grundberg E, Hao K, Juhani Junttila M, Kaplan LM, Kettunen J, Konig IR, Kwan T, Lawrence RW, Levinson DF, Lorentzon M, McKnight B, Morris AP, Muller M, Suh Ngwa J, Purcell S, Rafelt S, Salem RM, Salvi E et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467:832–838. doi:10.1038/nature09410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Magi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Hua Zhao J, Zhao W, Chen J, Fehrmann R, Hedman AK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Mateo Leach I, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stancakova A, Strawbridge RJ, Ju Sung Y, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Arnlov J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Bluher M, Bohringer S, Bonnycastle LL, Bottcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Ida Chen YD, Clarke R, Daw EW, de Craen AJ, Delgado G, Dimitriou M et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206. doi:10.1038/nature14177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. doi:10.1038/nature08494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Orr HA (1998) The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52:935–949

    Article  Google Scholar 

  • Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N (2010) Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 42:570–575. doi:10.1038/ng.610

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi:10.1086/519795

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • So HC, Yip BH, Sham PC (2010) Estimating the total number of susceptibility variants underlying complex diseases from genome-wide association studies. PLoS ONE 5:e13898. doi:10.1371/journal.pone.0013898

    Article  PubMed  PubMed Central  Google Scholar 

  • So HC, Li M, Sham PC (2011) Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study. Genet Epidemiol 35:447–456. doi:10.1002/gepi.20593

    Article  PubMed  Google Scholar 

  • Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from genome-wide SNPs. Am J Hum Genet 91:1011–1021. doi:10.1016/j.ajhg.2012.10.010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, Voight BF, Kraft P, Chen R, Kallberg HJ, Kurreeman FA, Kathiresan S, Wijmenga C, Gregersen PK, Alfredsson L, Siminovitch KA, Worthington J, de Bakker PI, Raychaudhuri S, Plenge RM (2012) Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet 44:483–489. doi:10.1038/ng.2232

    Article  PubMed  CAS  Google Scholar 

  • Varadhan R; Johns Hopkins University, Borchers HW; ABB Corporate Research (2011) dfoptim: derivative-free optimization. R package version 2011.8-1. http://CRAN.R-project.org/package=dfoptim (unpublished)

  • Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006. doi:10.1093/nar/gkt1229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26:2190–2191. doi:10.1093/bioinformatics/btq340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Chu AY, Estrada K, Luan J, Kutalik Z, Amin N, Buchkovich ML, Croteau-Chonka DC, Day FR, Duan Y, Fall T, Fehrmann R, Ferreira T, Jackson AU, Karjalainen J, Lo KS, Locke AE, Magi R, Mihailov E, Porcu E, Randall JC, Scherag A, Vinkhuyzen AA, Westra HJ, Winkler TW, Workalemahu T, Zhao JH, Absher D, Albrecht E, Anderson D, Baron J, Beekman M, Demirkan A, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Fraser RM, Goel A, Gong J, Justice AE, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Lui JC, Mangino M, Mateo Leach I, Medina-Gomez C, Nalls MA, Nyholt DR, Palmer CD, Pasko D, Pechlivanis S, Prokopenko I, Ried JS, Ripke S, Shungin D, Stancakova A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Afzal U, Arnlov J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Bluher M, Bolton JL, Bottcher Y, Boyd HA, Bruinenberg M, Buckley BM, Buyske S, Caspersen IH, Chines PS, Clarke R, Claudi-Boehm S, Cooper M, Daw EW, De Jong PA, Deelen J, Delgado G et al (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46:1173–1186. doi:10.1038/ng.3097

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569. doi:10.1038/ng.608

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82. doi:10.1016/j.ajhg.2010.11.011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to two anonymous peer reviewers for their constructive comments and suggestions. The authors are grateful to the investigators of the GIANT and GEFOS consortia for releasing the GWAS meta-analysis summary results for height and BMI, and BMD, respectively. This study was supported by the National Natural Science Foundation of China projects (31571291 to L. Z., 31501026 to Y. F. P., 31301092 to Y. L.), the Natural Science Foundation of Jiangsu Province (BK20150323 to Y.F.P.), and a project of the Priority Academic Program Development of Jiangsu Higher Education Institutions. Computing service was partially provided by the University of Shanghai for Science and Technology computing cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fang Pei.

Additional information

L. Zhang, Y.-P. Shen contributed equally to this study.

Appendices

Appendix 1: The form of Chi-squared non-central parameter (NCP) as a function of effect size (ES)

Under large sample size, the Wald test of association is approximately equivalent to the likelihood ratio test (LRT). Below, we will derive the form of Chi-squared NCP value λ with the LRT instead.

For a particular SNP site, denote the two alleles as A and a, and their frequencies as f and 1 − f. The three genotypes, AA, Aa, and aa are encoded as 0, 1, and 2 under the additive mode of inheritance. Under the Hardy–Weinberg equilibrium, their frequencies are f 2, 2f(1 − f) and (1 − f)2.

The linear regression model to test the association between the phenotype Y and the genotype G is

$$y = \alpha + \beta \cdot g + \varepsilon,$$

where α is the regression intercept, β is regression coefficient, ε is the normally distributed random error ε ~ N(0, σ 2). The parameters of the above model are θ = (α, β, σ 2), and the hypothesis to be tested is β = 0.

Under the alternative hypothesis, suppose the true model parameters are θ* = (α*, β*, σ*2). The distribution of the phenotype Y is dependent upon G in that y ~ N(α* + β*g, σ*2). The effect size e of the SNP is measured by the proportion of variation in Y explained by G,

$$e = \frac{{\text{var} (\beta^{*} g)}}{{\text{var} (\beta^{*} g) + \text{var} (e)}} = \frac{{\beta^{*2} \cdot 2f(1 - f)}}{{\beta^{*2} \cdot 2f(1 - f) + \sigma^{*2}}}$$

To calculate the NCP, we refer to the reference (Gauderman 2003) and take Y as random variable. Specifically, we calculate expected log-likelihood functions with respect to Y and G under the alternative and null hypotheses, respectively. Subtraction of the two maximized expected log-likelihoods composed the element of NCP.

For a single subject, the expected log-likelihood function l is defined as

$$l = \sum _{G} \smallint _{Y} { \ln } \left\{{L\left({{\varvec{\uptheta}}; y, g} \right)} \right\}p\left({y, g|{\varvec{\uptheta}}^{*}} \right)dY,$$

where \(L({\varvec{\uptheta}};y,g) \propto p(y|g,{\varvec{\uptheta}}) = \frac{1}{{\sqrt {2\pi \sigma^{2}}}}\exp \left\{{- \frac{{(y - \alpha - \beta g)^{2}}}{{2\sigma^{2}}}} \right\}\), and,

$$p(y,g|{\varvec{\uptheta}}^{*}) \propto p(y|g,{\varvec{\uptheta}}^{*})p(g|{\varvec{\uptheta}}^{*}) = \frac{1}{{\sqrt {2\pi \sigma^{*2}}}}\exp \left\{{- \frac{{(y - \alpha^{*} - \beta^{*} g)^{2}}}{{2\sigma^{*2}}}} \right\}p(g)$$

Under the alternative hypothesis,

$$\begin{aligned} l_{1} & = \sum\limits_{G} {\int\limits_{Y} {\ln \left[{\frac{1}{{\sqrt {2\pi \sigma^{2}}}}\exp \left\{{- \frac{{(y - \alpha - \beta g)^{2}}}{{2\sigma^{2}}}} \right\}} \right]\frac{1}{{\sqrt {2\pi \sigma^{*2}}}}\exp \left\{{- \frac{{(y - \alpha^{*} - \beta^{*} g)^{2}}}{{2\sigma^{*2}}}} \right\}p(g)dY}} \\ &= \sum\limits_{G} {\int\limits_{Y} {\left\{{- \frac{1}{2}\ln (2\pi \sigma^{2}) - \frac{{(y - \alpha - \beta g)^{2}}}{{2\sigma^{2}}}} \right\}\frac{1}{{\sqrt {2\pi \sigma^{*2}}}}\exp \left\{{- \frac{{(y - \alpha^{*} - \beta^{*} g)^{2}}}{{2\sigma^{*2}}}} \right\}p(g)dY}} \\ &= - \frac{1}{2}\ln (2\pi \sigma^{2}) - \frac{{f^{2} (\alpha^{*} - \alpha)^{2} + 2f(1 - f)(\alpha^{*} + \beta^{*} - \alpha - \beta)^{2} + (1 - f)^{2} (\alpha^{*} + 2\beta^{*} - \alpha - 2\beta)^{2} + \sigma^{*2}}}{{2\sigma^{2}}} \\ \end{aligned}$$

Maximizing l 1 by partial derivatives with respect to α, β, and σ 2 gets the MLE estimates,

$$\hat{\alpha}_{1} = \alpha^{*},\hat{\beta}_{1} = \beta^{*},\hat{\sigma}_{1}^{2} = \sigma^{*2},\quad {\text{and}}\quad \hat{l}_{1} = - \frac{1}{2}\ln (2\pi \sigma^{*2}) - \frac{1}{2}$$

Under the null hypothesis, β is restricted to be zero,

$$\begin{aligned} l_{0} & = \sum\limits_{G} {\int\limits_{Y} {\ln \left[{\frac{1}{{\sqrt {2\pi \sigma^{2}}}}\exp \left\{{- \frac{{(y - \alpha)^{2}}}{{2\sigma^{2}}}} \right\}} \right]\frac{1}{{\sqrt {2\pi \sigma^{*2}}}}\exp \left\{{- \frac{{(y - \alpha^{*} - \beta^{*} g)^{2}}}{{2\sigma^{*2}}}} \right\}p(g)dY}} \\ & = \sum\limits_{G} {\int\limits_{Y} {\left\{{- \frac{1}{2}\ln (2\pi \sigma^{2}) - \frac{{(y - \alpha)^{2}}}{{2\sigma^{2}}}} \right\}\frac{1}{{\sqrt {2\pi \sigma^{*2}}}}\exp \left\{{- \frac{{(y - \alpha^{*} - \beta^{*} g)^{2}}}{{2\sigma^{*2}}}} \right\}p(g)dY}} \\ & = - \frac{1}{2}\ln (2\pi \sigma^{2}) - \frac{{f^{2} (\alpha^{*} - \alpha)^{2} + 2f(1 - f)(\alpha^{*} + \beta^{*} - \alpha)^{2} + (1 - f)^{2} (\alpha^{*} + 2\beta^{*} - \alpha)^{2} + \sigma^{*2}}}{{2\sigma^{2}}} \\ \end{aligned}$$

Maximizing l 0 by partial derivatives with respect to α and σ 2 gets the MLE estimates,

$$\hat{\alpha}_{0} = \alpha^{*} + 2\beta^{*} (1 - f),\hat{\sigma}_{0}^{2} = \sigma^{*2} + 2f(1 - f)\beta^{*2}$$

Recalling the expression of e gets

$$\hat{\sigma}_{0}^{2} = \sigma^{*2} \left({\frac{1}{1 - e}} \right),\quad {\text{and}}$$
$$\hat{l}_{0} = - \frac{1}{2}\ln (2\pi \sigma^{*2}) - \frac{1}{2}\ln \left({\frac{1}{1 - e}} \right) - \frac{1}{2}$$

Therefore, for a sample of N subjects,

$$\lambda = 2 N(\hat{l}_{1} - \hat{l}_{0}) = N\ln \left({\frac{1}{1 - e}} \right).$$

Appendix 2: Integration form for gamma distribution

For gamma distribution family gamma(shape = k, scale = θ), the integration term has the following form

$$\begin{aligned} \int_{0}^{1} {f_{\lambda} (q_{r})p_{{\varvec{\uptheta}}} (e)de} & = \sum\limits_{i = 0}^{\infty} {\frac{{q^{{\frac{1 + 2i}{2} - 1}} \cdot e^{{- \frac{q}{2}}} \cdot \left({\frac{N}{2}} \right)^{i} \cdot \left({\frac{1}{{\frac{N}{2} + \frac{1}{\theta}}}} \right)^{i + k} \cdot \varGamma (i + k)}}{{i! \cdot 2^{{\frac{1 + 2i}{2}}} \cdot \varGamma \left({\frac{1 + 2i}{2}} \right) \cdot \theta^{k} \cdot \varGamma (k)}}} \\ & = \sum\limits_{i = 0}^{\infty} {\exp \left\{{\left({\frac{1 + 2i}{2} - 1} \right)\log (q) - \frac{q}{2} + i\log \left({\frac{N}{2}} \right) + (i + k)\log \left({\frac{2\theta}{2 + N\theta}} \right) + \log (\varGamma (i + k)) - \log (i!) - \left({\frac{1 + 2i}{2}} \right)\log (2) - \log \left({\varGamma \left({\frac{1 + 2i}{2}} \right)} \right) - k\log (\theta) - \log (\varGamma (k))} \right\}} \\ \end{aligned}.$$

Each term in the above equation is easily to compute. The summation will start from i = 0 and will usually converge after a small number of iterations (small i).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Shen, YP., Hu, WZ. et al. A new method for estimating effect size distribution and heritability from genome-wide association summary results. Hum Genet 135, 171–184 (2016). https://doi.org/10.1007/s00439-015-1621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1621-y

Keywords

Navigation