Skip to main content

Advertisement

Log in

Neurologic and ocular phenotype in Pitt–Hopkins syndrome and a zebrafish model

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

In this study, we performed an in-depth analysis of the neurologic and ophthalmologic phenotype in a patient with Pitt–Hopkins syndrome (PTHS), a disorder characterized by severe mental and motor retardation, carrying a uniallelic TCF4 deletion, and studied a zebrafish model. The PTHS-patient was characterized by high-resolution magnetic resonance imaging (MRI) with diffusion tensor imaging to analyze the brain structurally, spectral-domain optical coherence tomography to visualize the retinal layers, and electroretinography to evaluate retinal function. A zebrafish model was generated by knockdown of tcf4-function by injection of morpholino antisense oligos into zebrafish embryos and the morphant phenotype was characterized for expression of neural differentiation genes neurog1, ascl1b, pax6a, zic1, atoh1a, atoh2b. Data from PTHS-patient and zebrafish morphants were compared. While a cerebral MRI-scan showed markedly delayed myelination and ventriculomegaly in the 1-year-old PTHS-patient, no structural cerebral anomalies including no white matter tract alterations were detected at 9 years of age. Structural ocular examinations showed highly myopic eyes and an increase in ocular length, while retinal layers were normal. Knockdown of tcf4-function in zebrafish embryos resulted in a developmental delay or defects in terminal differentiation of brain and eyes, small eyes with a relative increase in ocular length and an enlargement of the hindbrain ventricle. In summary, tcf4-knockdown in zebrafish embryos does not seem to affect early neural patterning and regionalization of the forebrain, but may be involved in later aspects of neurogenesis and differentiation. We provide evidence for a role of TCF4/E2-2 in ocular growth control in PTHS-patients and the zebrafish model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allende ML, Weinberg ES (1994) The expression pattern of two zebrafish achaete-scute homolog (ash) genes is altered in the embryonic brain of the cyclops mutant. Dev Biol 166:509–530

    Article  PubMed  CAS  Google Scholar 

  • Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, Plouin P, Carter NP, Lyonnet S, Munnich A, Colleaux L (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt–Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80:988–993

    Article  PubMed  CAS  Google Scholar 

  • Andrieux J, Lepretre F, Cuisset JM, Goldenberg A, Delobel B, Manouvrier-Hanu S, Holder-Espinasse M (2008) Deletion 18q21.2q21.32 involving TCF4 in a boy diagnosed by CGH-array. Eur J Med Genet 51:172–177

    Article  PubMed  Google Scholar 

  • Baratz KH, Tosakulwong N, Ryu E, Brown WL, Branham K, Chen W, Tran KD, Schmid-Kubista KE, Heckenlively JR, Swaroop A, Abecasis G, Bailey KR, Edwards AO (2010) E2–2 protein and Fuchs’s corneal dystrophy. N Engl J Med 363:1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Bhat SP, Rayner SA, Chau SC, Ariyasu RG (2004) Pax-6 expression in posthatch chick retina during and recovery from form-deprivation myopia. Dev Neurosci 26:328–335

    Article  PubMed  CAS  Google Scholar 

  • Blader P, Fischer N, Gradwohl G, Guillemot F, Strähle U (1997) The activity of neurogenin1 is controlled by local cues in the zebrafish embryo. Development 124:4557–4569

    PubMed  CAS  Google Scholar 

  • Brockschmidt A, Todt U, Ryu S, Hoischen A, Landwehr C, Birnbaum S, Frenck W, Radlwimmer B, Lichter P, Engels H, Driever W, Kubisch C, Weber RG (2007) Severe mental retardation with breathing abnormalities (Pitt–Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4. Hum Mol Genet 16:1488–1494

    Article  PubMed  CAS  Google Scholar 

  • de Pontual L, Népote V, Attié-Bitach T, Al Halabiah H, Trang H, Elghouzzi V, Levacher B, Benihoud K, Augé J, Faure C, Laudier B, Vekemans M, Munnich A, Perricaudet M, Guillemot F, Gaultier C, Lyonnet S, Simonneau M, Amiel J (2003) Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine’s curse). Hum Mol Genet 12:3173–3180

    Article  PubMed  Google Scholar 

  • de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N, Soufflet C, Picard C, Durandy A, Dobbie A, Heron D, Isidor B, Motte J, Newburry-Ecob R, Pasquier L, Tardieu M, Viot G, Jaubert F, Munnich A, Colleaux L, Vekemans M, Etchevers H, Lyonnet S, Amiel J (2009) Mutational, functional, and expression studies of the TCF4 gene in Pitt–Hopkins syndrome. Hum Mutat 30:669–676

    Article  PubMed  Google Scholar 

  • Flitcroft DI, Adams GG, Robson AG, Holder GE (2005) Retinal dysfunction and refractive errors: an electrophysiological study of children. Br J Ophthalmol 89:484–488

    Article  PubMed  CAS  Google Scholar 

  • Flora A, Garcia JJ, Thaller C, Zoghbi HY (2007) The E-protein Tcf4 interacts with Math1 to regulate differentiation of a specific subset of neuronal progenitors. Proc Natl Acad Sci USA 104:15382–15387

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF (2009) Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol 148:445–450

    Article  PubMed  Google Scholar 

  • Giurgea I, Missirian C, Cacciagli P, Whalen S, Fredriksen T, Gaillon T, Rankin J, Mathieu-Dramard M, Morin G, Martin-Coignard D, Dubourg C, Chabrol B, Arfi J, Giuliano F, Claude Lambert J, Philip N, Sarda P, Villard L, Goossens M, Moncla A (2008) TCF4 deletions in Pitt–Hopkins syndrome. Hum Mutat 29:E242–E251

    Article  PubMed  Google Scholar 

  • Grinblat Y, Gamse J, Patel M, Sive H (1998) Determination of the zebrafish forebrain: induction and patterning. Development 125:4403–4416

    PubMed  CAS  Google Scholar 

  • Hammond CJ, Andrew T, Mak YT, Spector TD (2004) A susceptibility locus for myopia in the normal population is linked to the PAX6 gene region on chromosome 11: a genomewide scan of dizygotic twins. Am J Hum Genet 75:294–304

    Article  PubMed  CAS  Google Scholar 

  • Han W, Leung KH, Fung WY, Mak JY, Li YM, Yap MK, Yip SP (2009) Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families. Invest Ophthalmol Vis Sci 50:47–56

    Article  PubMed  Google Scholar 

  • Hauptmann G, Gerster T (1994) Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet 10:266

    Article  PubMed  CAS  Google Scholar 

  • Hewitt AW, Kearns LS, Jamieson RV, Williamson KA, van Heyningen V, Mackey DA (2007) PAX6 mutations may be associated with high myopia. Ophthalmic Genet 28:179–182

    Article  PubMed  CAS  Google Scholar 

  • Ik Tsen Heng J, Tan SS (2003) The role of class I HLH genes in neural development–have they been overlooked? Bioessays 25:709–716

    Article  PubMed  Google Scholar 

  • Ikuno Y, Tano Y (2009) Retinal and choroidal biometry in highly myopic eyes with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50:3876–3880

    Article  PubMed  Google Scholar 

  • Kalscheuer VM, Feenstra I, Van Ravenswaaij-Arts CM, Smeets DF, Menzel C, Ullmann R, Musante L, Ropers HH (2008) Disruption of the TCF4 gene in a girl with mental retardation but without the classical Pitt–Hopkins syndrome. Am J Med Genet A 146A:2053–2059

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Bae YK, Yamanaka Y, Yamashita S, Shimizu T, Fujii R, Park HC, Yeo SY, Huh TL, Hibi M, Hirano T (1997) Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neurosci Lett 239:113–116

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  PubMed  CAS  Google Scholar 

  • Krauss S, Johansen T, Korzh V, Moens U, Ericson JU, Fjose A (1991) Zebrafish pax[zf-a]: a paired box-containing gene expressed in the neural tube. EMBO J 10:3609–3619

    PubMed  CAS  Google Scholar 

  • Li J, Liu ZJ, Pan YC, Liu Q, Fu X, Cooper NG, Li Y, Qiu M, Shi T (2007) Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain. Genome Biol 8:R244

    Article  PubMed  Google Scholar 

  • Liao J, He J, Yan T, Korzh V, Gong Z (1999) A class of neuroD-related basic helix-loop-helix transcription factors expressed in developing central nervous system in zebrafish. DNA Cell Biol 18:333–344

    Article  PubMed  CAS  Google Scholar 

  • Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M, International Society for Clinical Electrophysiology of Vision (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

  • Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    Article  PubMed  CAS  Google Scholar 

  • Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 51:265–269

    Article  Google Scholar 

  • Ng TK, Lam CY, Lam DS, Chiang SW, Tam PO, Wang DY, Fan BJ, Yam GH, Fan DS, Pang CP (2009) AC and AG dinucleotide repeats in the PAX6 P1 promoter are associated with high myopia. Mol Vis 15:2239–2248

    PubMed  CAS  Google Scholar 

  • Perlman I, Meyer E, Haim T, Zonis S (1984) Retinal function in high refractive error assessed electroretinographically. Br J Ophthalmol 68:79–84

    Article  PubMed  CAS  Google Scholar 

  • Persson P, Jögi A, Grynfeld A, Påhlman S, Axelson H (2000) HASH-1 and E2–2 are expressed in human neuroblastoma cells and form a functional complex. Biochem Biophys Res Commun 274:22–31

    Article  PubMed  CAS  Google Scholar 

  • Pitt D, Hopkins I (1978) A syndrome of mental retardation, wide mouth and intermittent overbreathing. Aust Paediatr J 14:182–184

    PubMed  CAS  Google Scholar 

  • Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC (2007) p53 activation by knockdown technologies. PLoS Genet 3:e78

    Article  PubMed  Google Scholar 

  • Rosenfeld JA, Leppig K, Ballif BC, Thiese H, Erdie-Lalena C, Bawle E, Sastry S, Spence JE, Bandholz A, Surti U, Zonana J, Keller K, Meschino W, Bejjani BA, Torchia BS, Shaffer LG (2009) Genotype-phenotype analysis of TCF4 mutations causing Pitt–Hopkins syndrome shows increased seizure activity with missense mutations. Genet Med 11:797–805

    Article  PubMed  Google Scholar 

  • Taddeucci G, Bonuccelli A, Mantellassi I, Orsini A, Tarantino E (2010) Pitt–Hopkins syndrome: report of a case with a TCF4 gene mutation. Ital J Pediatr 36:12

    Article  PubMed  Google Scholar 

  • Takano K, Lyons M, Moyes C, Jones J, Schwartz C (2010) Two percent of patients suspected of having Angelman syndrome have TCF4 mutations. Clin Genet 78:282–288

    Article  PubMed  CAS  Google Scholar 

  • Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87

    Article  PubMed  Google Scholar 

  • Westerfield M (1994) The zebrafish book. University of Oregon Press, Eugene

    Google Scholar 

  • Xue R, van Zijl PC, Crain BJ, Solaiyappan M, Mori S (1999) In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 42:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Yoshii M, Yanashima K, Nagasaka E, Wada H, Enoki T, Okisaka S (2002) Nonlinear component of the electroretinogram recorded from the posterior pole of normal and highly myopic human eyes. Ophthalmic Res 34:393–399

    Article  PubMed  Google Scholar 

  • Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, Reardon W, Saraiva J, Cabral A, Gohring I, Devriendt K, de Ravel T, Bijlsma EK, Hennekam RC, Orrico A, Cohen M, Dreweke A, Reis A, Nurnberg P, Rauch A (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt–Hopkins syndrome). Am J Hum Genet 80:994–1001

    Article  PubMed  CAS  Google Scholar 

  • Zweier C, Sticht H, Bijlsma EK, Clayton-Smith J, Boonen SE, Fryer A, Greally MT, Hoffmann L, den Hollander NS, Jongmans M, Kant SG, King MD, Lynch SA, McKee S, Midro AT, Park SM, Ricotti V, Tarantino E, Wessels M, Peippo M, Rauch A (2008) Further delineation of Pitt–Hopkins syndrome: phenotypic and genotypic description of 16 novel patients. J Med Genet 45:738–744

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the patient and her family for participation, and acknowledge Dr. Robert Sassen, Rheinische Friedrich-Wilhelms-University, Bonn, Germany for clinical patient care. This work was supported by EU-IP ZF-MODELS, and the European Commission EU FP7 Marie Curie Intra-European Fellowship 237238. The funding organization had no role in the design or conduct of this research. The contents of this publication reflect only the authors’ views and not the views of the funding organization.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruthild G. Weber.

Additional information

A. Brockschmidt and A. Filippi contributed equally to this work and should both be considered as first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockschmidt, A., Filippi, A., Charbel Issa, P. et al. Neurologic and ocular phenotype in Pitt–Hopkins syndrome and a zebrafish model. Hum Genet 130, 645–655 (2011). https://doi.org/10.1007/s00439-011-0999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-0999-4

Keywords

Navigation