Skip to main content

Advertisement

Log in

Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD)

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is a severe form of polycystic kidney disease characterized by enlarged kidneys and congenital hepatic fibrosis. Given the poor prognosis for the majority of children with the severe perinatal ARPKD phenotype, there is a regular request for prenatal testing. ARPKD is caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, which consists of 86 exons that are variably assembled into a number of alternatively spliced transcripts. The longest transcript, comprising 67 exons, encodes the protein fibrocystin/polyductin. We have set up mutation analysis by direct sequencing of these 67 exons. In 39 mainly Dutch families we identified: 11 nonsense mutations, 15 deletions/insertions, 5 splice site mutations, and 39 missense mutations. To classify missense variants we combined evolutionary conservation, using the human, chimpanzee, dog, mouse, chicken and frog Pkhd1 sequences, with the Grantham score for chemical differences. Thirty-three missense mutations were considered pathogenic and seven were classified as rare, probably pathogenic variants. In addition to sequence analysis, multiplex ligation-dependent probe amplification (MLPA) was used to identify multiple exon deletions. However, no large deletions in the PKHD1 gene were identified. In 31 index patients two mutations were found, in 6 patients one mutation was found, leading to a mutation detection rate of 87%. The analysis of amino acid conservation as well as applying the Grantham score for chemical differences allowed us to determine the pathogeneity for nearly all new missense mutations and thus proved to be useful tools to classify missense variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV (2004) Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41:492–507

    Article  PubMed  CAS  Google Scholar 

  • Bergmann C, Senderek J, Sedlacek B, Pegiazoglou I, Puglia P, Eggermann T, Rudnik-Schneborn S, Furu L, Onuchic LF, De Baca M, Germino GG, Guay-Woodford L, Somlo S, Moser M, Buttner R, Zerres K (2003) Spectrum of Mutations in the Gene for Autosomal Recessive Polycystic Kidney Disease (ARPKD/PKHD1). J Am Soc Nephrol 14:76–89

    Article  PubMed  CAS  Google Scholar 

  • Bergmann C, Senderek J, Kupper F, Schneider F, Dornia C, Windelen E, Eggermann T, Rudnik-Schoneborn S, Kirfel J, Furu L, Onuchic LF, Rossetti S, Harris PC, Somlo S, Guay-Woodford L, Germino GG, Moser M, Buttner R, Zerres K (2004a) PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 23:453–463

    Article  PubMed  CAS  Google Scholar 

  • Bergmann C, Senderek J, Schneider F, Dornia C, Kupper F, Eggermann T, Rudnik-Schoneborn S, Kirfel J, Moser M, Buttner R, Zerres K (2004b) PKHD1 mutations in families requesting prenatal diagnosis for autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 23:487–495

    Article  PubMed  CAS  Google Scholar 

  • Bergmann C, Kupper F, Dornia C, Schneider F, Senderek J, Zerres K (2005) Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD). Hum Mutat 25:225–231

    Article  PubMed  CAS  Google Scholar 

  • Brunak S, Engelbrecht J, Knudsen S (1990) Neural network detects errors in the assignment of mRNA splice sites. Nucleic Acids Res 18:4797–4801

    Article  PubMed  CAS  Google Scholar 

  • Cobben JM, Breuning MH, Schoots C, ten Kate LP, Zerres K (1990) Congenital hepatic fibrosis in autosomal dominant polycystic kidney disease. Kidney Int 38:880–885

    Article  PubMed  CAS  Google Scholar 

  • Davila S, Furu L, Gharavi AG, Tian X, Onoe T, Qian Q, Li A, Cai Y, Kamath PS, King BF, Azurmendi PJ, Tahvanainen P, Kaariainen H, Hockerstedt K, Devuyst O, Pirson Y, Martin RS, Lifton RP, Tahvanainen E, Torres VE, Somlo S (2004) Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet 36:575–577

    Article  PubMed  CAS  Google Scholar 

  • Drenth JP, Te Morsche RH, Smink R, Bonifacino JS, Jansen JB (2003) Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat Genet 33:345–347

    Article  PubMed  CAS  Google Scholar 

  • Furu L, Onuchic LF, Gharavi A, Hou X, Esquivel EL, Nagasawa Y, Bergmann C, Senderek J, Avner E, Zerres K, Germino GG, Guay-Woodford LM, Somlo S (2003) Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J Am Soc Nephrol 14:2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  PubMed  CAS  Google Scholar 

  • Guay-Woodford LM, Desmond RA (2003) Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111:1072–1080

    Article  PubMed  Google Scholar 

  • Guay-Woodford LM, Muecher G, Hopkins SD, Avner ED, Germino GG, Guillot AP, Herrin J, Holleman R, Irons DA, Primack W, Thomson P, Waldo F, Lunt P, Zerres K (1995) The severe perinatal form of autosomal recessive polycystic kidney disease maps to chromosome 6 p21.1-p12: implications for genetic counseling. Am J Hum Genet 56:1101–1107

    PubMed  CAS  Google Scholar 

  • Hallermann C, Mucher G, Kohlschmidt N, Wellek B, Schumacher R, Bahlmann F, Shahidi-Asl P, Theile U, Rudnik-Schoneborn S, Muntefering H, Zerres K (2000) Syndrome of autosomal recessive polycystic kidneys with skeletal and facial anomalies is not linked to the ARPKD gene locus on chromosome 6 p. Am J Med Genet 90:115–119

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Mrug M, Yoder BK, Lefkowitz EJ, Kremmidiotis G, D‘Eustachio P, Beier DR, Guay-Woodford LM (2002) Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest 109:533–540

    Article  PubMed  CAS  Google Scholar 

  • Johnson CA, Gissen P, Sergi C (2003) Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet 40:311–319

    Article  PubMed  CAS  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa Y, Matthiesen S, Onuchic LF, Hou X, Bergmann C, Esquivel E, Senderek J, Ren Z, Zeltner R, Furu L, Avner E, Moser M, Somlo S, Guay-Woodford L, Buttner R, Zerres K, Germino GG (2002) Identification and characterization of Pkhd1, the mouse orthologue of the human ARPKD gene. J Am Soc Nephrol 13:2246–2258

    Article  PubMed  CAS  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  • Onuchic LF, Furu L, Nagasawa Y, Hou X, Eggermann T, Ren Z, Bergmann C, Senderek J, Esquivel E, Zeltner R, Rudnik-Schoneborn S, Mrug M, Sweeney W, Avner ED, Zerres K, Guay-Woodford LM, Somlo S, Germino GG (2002) PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like Plexin-Transcription-Factor Domains and Parallel Beta-Helix 1 Repeats. Am J Hum Genet 70:1305–1317

    Article  PubMed  CAS  Google Scholar 

  • Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comput Biol 4:311–323

    Article  PubMed  CAS  Google Scholar 

  • Reynolds DM, Hayashi T, Cai Y, Veldhuisen B, Watnick TJ, Lens XM, Mochizuki T, Qian F, Maeda Y, Li L, Fossdal R, Coto E, Wu G, Breuning MH, Germino GG, Peters DJM, Somlo S (1999) Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J Am Soc Nephrol 10:2342–2351

    PubMed  CAS  Google Scholar 

  • Rigden DJ, Mello LV, Galperin MY (2004) The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci 29:335–339

    Article  PubMed  CAS  Google Scholar 

  • Rossetti S, Torra R, Coto E, Consugar M, Kubly V, Malaga S, Navarro M, El Youssef M, Torres VE, Harris PC (2003) A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Ki 64:391–403

    Article  CAS  Google Scholar 

  • Scheffers MS, Le H, van der Bent P, Leonhard W, Prins F, Spruit L, Breuning MH, De Heer E, Peters DJM (2002) Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK-cells. Hum Mol Genet 11:1–9

    Article  PubMed  Google Scholar 

  • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57

    Article  PubMed  Google Scholar 

  • Senapathy P, Shapiro MB, Harris NL (1990) Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol 183:252–278

    PubMed  CAS  Google Scholar 

  • Sharp AM, Messiaen LM, Page G, Antignac C, Gubler MC, Onuchic LF, Somlo S, Germino GG, Guay-Woodford LM (2005) Comprehensive genomic analysis of PKHD1 mutations in ARPKD cohorts. J Med Genet 42:336–349

    Article  PubMed  CAS  Google Scholar 

  • Teraoka SN, Telatar M, Becker-Catania S, Liang T, Onengut S, Tolun A, Chessa L, Sanal O, Bernatowska E, Gatti RA, Concannon P (1999) Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am J Hum Genet 64:1617–1631

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Luo Y, Wilson PD, Witman GB, Zhou J (2004) The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 15:592–602

    Article  PubMed  Google Scholar 

  • Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallao R, Ishibashi M, Milliner DS, Torres VE, Harris PC (2002) The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 30:259–269

    Article  PubMed  Google Scholar 

  • Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S, Bacallao R, Torra R, LaRusso NF, Torres VE, Harris PC (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710

    Article  PubMed  CAS  Google Scholar 

  • Weese-Mayer DE, Smith KM, Reddy JK, Salafsky I, Poznanski AK (1987) Computerized tomography and ultrasound in the diagnosis of cerebro-hepato-renal syndrome of Zellweger. Pediatr Radiol 17:170–172

    Article  PubMed  CAS  Google Scholar 

  • White SJ, Vink GR, Kriek M, Wuyts W, Schouten J, Bakker B, Breuning MH, Dunnen JT (2004) Two-color multiplex ligation-dependent probe amplification: Detecting genomic rearrangements in hereditary multiple exostoses. Hum Mutat 24:86–92

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, Chen Y, Yi Y, Tsuchiya K, Moeckel G, Cheung J, Liang D, Tham K, Xu X, Chen XZ, Pei Y, Zhao ZJ, Wu G (2002) A novel gene encoding a TIG multiple domain protein is a positional candidate for autosomal recessive polycystic kidney disease. Genomics 80:96–104

    Article  PubMed  CAS  Google Scholar 

  • Zerres K, Mucher G, Bachner L, Deschennes G, Eggermann T, Kaariainen H, Knapp M, Lennert T, Misselwitz J, Muhlendahl KEV, Neumann HPH, Pirson Y, Rudnik-Schoneborn S, Steinbicker V, Wirth B, Scharer K (1994) Mapping the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6 p21-cen. Nature Genet 7:429–432

    Article  PubMed  CAS  Google Scholar 

  • Zerres K, Rudnik-Schoneborn S, Deget F, Holtkamp U, Brodehl J, Geisert J, Scharer K (1995) Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Acta Paediatr 85:437–445

    Article  Google Scholar 

  • Zerres K, Mucher G, Becker J, Steinkamm C, Rudnik-Schoneborn S, Heikkila P, Rapola J, Salonen R, Germino GG, Onuchic L, Somlo S, Avner ED, Harman LA, Stockwin JM, Guay-Woodford LM (1998) Prenatal diagnosis of autosomal recessive polycystic kidney disease (ARPKD): molecular genetics, clinical experience, and fetal morphology. Am J Med Genet 76:137–144

    Article  PubMed  CAS  Google Scholar 

  • Zhang MZ, Mai W, Li C, Cho SY, Hao C, Moeckel G, Zhao R, Kim I, Wang J, Xiong H, Wang H, Sato Y, Wu Y, Nakanuma Y, Lilova M, Pei Y, Harris RC, Li S, Coffey RJ, Sun L, Wu D, Chen XZ, Breyer MD, Zhao ZJ, McKanna JA, Wu G (2004) PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proc Natl Acad Sci USA 101:2311–2316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the families and their physicians for their cooperation and Dr.P. de Knijff of the forensic laboratory for confirming the paternity in the de novo family 59917. We thank reviewers for their helpfull suggestions. This work was supported by a grant from the Dutch Kidney Foundation (C02.2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorien J. M. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losekoot, M., Haarloo, C., Ruivenkamp, C. et al. Analysis of missense variants in the PKHD1-gene in patients with autosomal recessive polycystic kidney disease (ARPKD). Hum Genet 118, 185–206 (2005). https://doi.org/10.1007/s00439-005-0027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-0027-7

Keywords

Navigation