Skip to main content
Log in

Analysis of natural variation of the rice blast resistance gene Pike and identification of a novel allele Pikg

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Plant major resistance (R) genes are effective in detecting pathogen signal molecules and triggering robust defense responses. Investigating the natural variation in R genes will allow identification of the critical amino acid residues determining recognition specificity in R protein and the discovery of novel R alleles. The rice blast resistance gene Pike, comprising of two adjacent CC-NBS-LRR genes, namely, Pike-1 and Pike-2, confers broad-spectrum resistance to Magnaporthe oryzae. Here, we demonstrated that Pike-1 determined Pike-specific resistance through direct interaction with the pathogen signal molecule AvrPik. Analysis of natural variation in 79 Pike-1 variants in the Asian cultivated rice Oryza sativa and its wild relatives revealed that the CC and NBS regions, particularly the CC region of the Pike-1 protein were the most diversified. We also found that balancing selection had occurred in O. sativa and O. rufipogon to maintain the genetic diversity of the Pike-1 alleles. By analysis of amino acid sequences, we identified 40 Pike-1 variants in these rice germplasms. These variants were divided into three major groups that corresponded to their respective clades. A new Pike allele, designated Pikg, that differed from Pike by a single amino acid substitution (D229E) in the Pike-1 CC region of the Pike protein was identified from wild rice relatives. Pathogen assays of Pikg transgenic plants revealed a unique reaction pattern that was different from that of the previously identified Pike alleles, namely, Pik, Pikh, Pikm, Pikp, Piks and Pi1. These findings suggest that minor amino acid residues in Pike-1/Pikg-1 determine pathogen recognition specificity and plant resistance. As a new blast R gene derived from rice wild relatives, Pikg has potential applications in rice breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonman JM, De Dios TIV, Khin MM (1986) Physiologic specialization of Pricularia oryzae in the Philippines. Plant Dis 70:767–769

    Article  Google Scholar 

  • Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, Kawano Y, Shimamoto K, Dodds P, Terauchi R, Kroj T (2014) The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J 33:1941–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Songkumarn P, Liu J, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z (2015) Pike, a rice blast resistance allele consisting of two adjacent NBS–LRR genes, was identified as a novel allele at the Pik locus. Mol Breeding 35:117

    Article  CAS  Google Scholar 

  • Costanzo S, Jia YL (2010) Sequence variation at the rice blast resistance gene Pi-km locus: Implications for the development of allele specific markers. Plant Sci 178:523–530

    Article  CAS  Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR (2012) A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics 12:215–228

    Article  CAS  PubMed  Google Scholar 

  • De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, Banfield MJ (2018) Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nat Plants 4:576–585

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Gupta SK, Rai AK, Kanwar SS, Chand D, Singh NK, Sharma TR (2012) The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice. J Exp Bot 63:757–772

    Article  CAS  PubMed  Google Scholar 

  • He F, Zhang F, Sun W, Ning Y, Wang GL (2018) A versatile vector toolkit for functional analysis of rice genes. Rice 11:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Pan Q (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Si W, Deng Q, Li P, Yang S (2014) Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet 15:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imam J, Mandal NP, Variar M, Shukla P (2016) Allele mining and selective patterns of Pi9 gene in a set of rice landraces from India. Front Plant Sci 7:1846

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones J, Dangl J (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kalia S, Rathour R (2019) Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech 9:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012) Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72:894–907

    Article  CAS  PubMed  Google Scholar 

  • Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Rani NS, Viraktamath BC, Madhav MS (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28:451–461

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang Q, Li C, Bi Y, Fu X, Wang R (2019) Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae. BMC Plant Biol 19:204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longya A, Chaipanya C, Franceschetti M, Maidment JHR, Banfield MJ, Jantasuriyarat C (2019) Gene duplication and mutation in the emergence of a novel aggressive allele of the AVR-Pik effector in the rice blast fungus. Mol Plant-Microbe Interact 32:740–749

    Article  CAS  PubMed  Google Scholar 

  • Lundberg M, Zhong X, Konrad A, Olsen RA, Råberg L (2020) Balancing selection in pattern recognition receptor signalling pathways is associated with gene function and pleiotropy in a wild rodent. Mol Ecol 29:1990–2003

    Article  CAS  PubMed  Google Scholar 

  • Maqbool A, Saitoh H, Franceschetti M, Stevenson CEM, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ (2015) Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. Elife 4:e08709

    Article  PubMed Central  Google Scholar 

  • Monteiro F, Nishimura MT (2018) Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu Rev Phytopathol 56:243–267

    Article  CAS  PubMed  Google Scholar 

  • Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroj T (2017) Recognition of the Magnaporthe oryzae effector AVR-Pia by the decoy domain of the rice NLR immune receptor RGA5. Plant Cell 29:156–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennisi E (2010) Armed and dangerous. Science 327:804–805

    Article  CAS  PubMed  Google Scholar 

  • Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Sanchez PL, Wing RA, Brar DS (2013) The wild relative of rice: genomes and genomics. In: Zhang Q, Wing RA (eds) Plant genetics and genomics: crops and models. Springer, New York, pp 9–25

    Google Scholar 

  • Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170:2095–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuichi F, Norikuni S, Hironori K, Kazuko O, Takehiko S, Kaworu E, Nagao H, Akira T, Hirohiko H, Kazutoshi O (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  CAS  Google Scholar 

  • Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T (2007) Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35:W506–W511

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20

    Article  CAS  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu H, Yanoria MJT, Ebron LA, Nagao H, Ikuo A, Hiroshi K, Imbe T, Khush GS (2000) Development of monogenic lines of rice for blast resistance. Breeding Sci 50:229–234

    Article  Google Scholar 

  • Vo KTX, Lee SK, Halane MK, Song MY, Hoang TV, Kim CY, Park SY, Jeon J, Kim ST, Sohn KH, Jeon JS (2019) Pi5 and Pii paired NLRs are functionally exchangeable and confer similar disease resistance specificity. Mol Cells 42:637–645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZX, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (2010) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64

    Article  CAS  Google Scholar 

  • Wang JC, Jia Y, Wen JW, Liu WP, Liu XM, Li L, Jiang ZY, Zhang JH, Guo XL, Ren JP (2013) Identification of rice blast resistance genes using international monogenic differentials. Crop Protect 45:109–116

    Article  CAS  Google Scholar 

  • Xiao G, Yang J, Zhu X, Wu J, Zhou B (2020) Prevalence of ineffective haplotypes at the rice blast resistance (R) gene loci in Chinese elite hybrid rice varieties revealed by sequence-based molecular diagnosis. Rice 13:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Gu T, Pan C, Feng Z, Ding J, Hang Y, Chen JQ, Tian D (2008) Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet 116:165–177

    Article  CAS  PubMed  Google Scholar 

  • Yeatman CW, Kafton D, Wilkes G (1985) Plant genetic resources: a conservation imperative. Westview Press, Boulder

    Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028

    Article  PubMed  Google Scholar 

  • Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q (2014) Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS ONE 9:e98067–e98067

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Zhijian Xu (Guangxi Academy of Agricultural Sciences of China) for providing the wild rice accessions used in the present study. Also thank Dr. Cailin Lei (Chinese Academy of Agricultural Sciences), Prof. Weiren Wu (Fujian Agriculture and Forestry University) for providing rice blast resistance gene monogenic lines, and Dr. Dazhao Yu (Hubei Academy of Agricultural Sciences of China) for providing some of the M. oryzae isolates inoculated in the present study. This work was financed by the Special Transgenic Program of the Ministry of Agriculture in China (No. 2016ZX08001004-002), National Natural Science Foundation of China (No.31901522) and Collaborative Innovation Center of Hubei Province for Hybrid Rice.

Funding

This work was financed by the Special Transgenic Program of the Ministry of Agriculture in China (No. 2016ZX08001004-002), National Natural Science Foundation of China (No.31901522) and Collaborative Innovation Center of Hubei Province for Hybrid Rice.

Author information

Authors and Affiliations

Authors

Contributions

FM, YH and ZZ conceived and designed research. FM conducted experiments and analysed data. YH, JC, XL, HW, MZ and SL contributed to the experiment and data analysis. FM, QC and ZZ wrote and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zhihong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 6269 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., He, Y., Chen, J. et al. Analysis of natural variation of the rice blast resistance gene Pike and identification of a novel allele Pikg. Mol Genet Genomics 296, 939–952 (2021). https://doi.org/10.1007/s00438-021-01795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-021-01795-w

Keywords

Navigation