Skip to main content
Log in

Identification and classification of differentially expressed genes in pyrethroid-resistant Culex pipiens pallens

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Culex pipiens pallens is an important vector that transmits Bancroftian filariasis, Japanese encephalitis and other diseases that pose a serious threat to human health. Extensive and improper use of insecticides has caused insecticide resistance in mosquitoes, which has become an important obstacle to the control of mosquito-borne diseases. It is crucial to investigate the underlying mechanism of insecticide resistance. The aims of this study were to identify genes involved in insecticide resistance based on the resistance phenotype, gene expression profile and single-nucleotide polymorphisms (SNPs) and to screen for major genes controlling insecticide resistance. Using a combination of SNP and transcriptome data, gene expression quantitative trait loci (eQTLs) were studied in deltamethrin-resistant mosquitoes. The most differentially expressed pathway in the resistant group was identified, and a regulatory network was built using these SNPs and the differentially expressed genes (DEGs) in this pathway. The major candidate genes involved in the control of insecticide resistance were analyzed by qPCR, siRNA microinjection and CDC bottle bioassays. A total of 85 DEGs that encoded putative detoxification enzymes (including 61 P450s) were identified in this pathway. The resistance regulatory network was built using SNPs, and these metabolic genes, and a major gene, CYP9AL1, were identified. The functional role of CYP9AL1 in insecticide resistance was confirmed by siRNA microinjection and CDC bottle bioassays. Using the eQTL approach, we identified important genes in pyrethroid resistance that may aid in understanding the mechanism underlying insecticide resistance and in targeting new measures for resistance monitoring and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed in the current study are available in the NCBI repository, (http://www.ncbi.nlm.nih.gov/ and https://www.ncbi.nlm.nih.gov/sra/SRP129856). The data supporting the conclusions of this article are included in the article and additional files.

References

  • Acevedo MA, Prosper O, Lopiano K, Ruktanonchai N, Caughlin TT, Martcheva M, Osenberg CW, Smith DL (2015) Spatial heterogeneity, host movement and mosquito-borne disease transmission. PLoS One 10(6):e0127552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG et al (2000) The genome sequence of Drosophila melanogaster. Science 287(5461):2185–2195

    Article  PubMed  Google Scholar 

  • Aizoun N, Aikpon R, Padonou GG, Oussou O, Oke-Agbo F, Gnanguenon V, Osse R, Akogbeto M (2013) Mixed-function oxidases and esterases associated with permethrin, deltamethrin and bendiocarb resistance in Anopheles gambiae s.l. in the southnorth transect Benin, West Africa. Parasit Vectors 6:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audic S, Claverie JM (1997) The signifcance of digital gene expression profles. Genome Res 7:986–995

    Article  CAS  PubMed  Google Scholar 

  • Bariami V, Jones CM, Poupardin R, Vontas J, Ranson H (2012) Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti. PLoS Negl Trop Dis 6(6):e1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass C, Puinean AM, Andrews M, Cutler P, Daniels M, Elias J, Paul VL, Crossthwaite AJ, Denholm I, Field LM, Foster SP, Lind R, Williamson MS, Slater R (2011) Mutation of a nicotinic acetylcholine receptor b subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci 12(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Statist 29:1165–1188

    Article  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonizzoni M, Afrane Y, Dunn WA, Atieli FK, Zhou G, Zhong D, Li J, Githeko A, Yan G (2012) Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-SEq. PloS One 7(9):e44607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canales M, Naranjo V, Almazan C, Molina R, Tsuruta SA, Szabo MP, Manzano-Roman R, Pérez de la Lastra JM, Kocan KM, Jiménez MI, Lucientes J, Villar M, de la Fuente J (2009) Conservation and immunogenicity of the mosquito ortholog of the tick-protective antigen, subolesin. Parasitol Res 105:97–111

    Article  PubMed  Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Green ED, Guttmacher AE, Guyer MS, Institute USNHGR (2003) A vision for the future of genomics research. Nature 422(6934):835–847

    Article  CAS  PubMed  Google Scholar 

  • Edi CV, Djogbenou L, Jenkins AM, Regna K, Muskavitch MA, Poupardin R, Jones CM, Essandoh J, Kétoh GK, Paine MJ, Koudou BG, Donnelly MJ, Ranson H, Weetman D (2014) CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet 10:e1004236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong W, Girod R, Poupardin R, Boyer F, Reynaud S, David JP (2017) In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: an integrated next-generation sequencing approach. PLoS Negl Trop Dis 11(4)

  • Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, Tatem AJ, Hay SI (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HF, Price RN, Müeller I, Baird JK, Hay SI (2012) A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 6(9):e1814

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  Google Scholar 

  • Kasai S, Scott JG (2000) Over-expression of cytochrome P450 CYP6D1 is associated with mono-oxygenase-mediated pyrethroid resistance in house flies from Georgia. Pestic Biochem Physiol 68:34–41

    Article  CAS  Google Scholar 

  • Komagata O, Kasai S, Tomita T (2010) Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem Mol Biol 40(2):146–152

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lv Y, Wang W, Hong S, Lei Z, Fang F, Guo Q, Hu S, Tian M, Liu B, Zhang D, Sun Y, Ma L, Shen B, Zhou D, Zhu C (2016) Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-sEq. Mol Genet Genom 291(1):309–321

    Article  CAS  Google Scholar 

  • Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JM (2005) Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol 14:365–373

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNASEq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nikou D, Ranson H, Hemingway J (2003) An adult-specific CYP6 P450 gene is over expressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318:91–102

    Article  CAS  PubMed  Google Scholar 

  • Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV, Unger MF, Collins FH, Feyereisen R (2012) Evolution of supergene families associated with insecticide resistance. Science 298(5591):179–181

    Article  CAS  Google Scholar 

  • Reddy BN, Rao BP, Prasad G, Raghavendra K (2012) Identification and classification of detoxificationenzymes from Culex quinquefasciatus (Diptera: Culicidae). Bioinformation 8(9):430–436

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivero A, Vezilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6:e1001000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saisawang C, Wongsantichon J, Ketterman AJ (2012) A preliminary characterization of the cytosolic glutathione transferase proteome from Drosophila melanogaster. Biochem J 442(1):181–190

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Yoshimizu MH, Kasai S (2015) Pyrethroid resistance in Culex pipiens mosquitoes. Pestic Biochem Physiol 120:68–76

    Article  CAS  PubMed  Google Scholar 

  • Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SH, Hemingway J, Black WC, Ranson H (2008) Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 38(1):113–123

    Article  CAS  PubMed  Google Scholar 

  • Tian M, Liu B, Hu H, Li X, Guo Q, Zou F, Liu X, Hu M, Guo J, Ma L, Zhou D, Sun Y, Shen B, Zhu C (2016) MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens. Parasitol Res 115(12):4511–4517

    Article  PubMed  Google Scholar 

  • Tijet N, Helvig C, Feyereisen R (2001) The cytochrome P450 gene superfamily in Drosophila melanogaster: annotation, intron-exon organization and phylogeny. Gene 262(1–2):189–198

    Article  CAS  PubMed  Google Scholar 

  • Varmus H, Klausner R, Zerhouni E, Acharya T, Daar AS, Singer PA (2003) Public health. Grand challenges in global health. Science 302(5644):398–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  CAS  Google Scholar 

  • Wang ZM, Li CX, Xing D, Yu YH, Liu N, Xue RD, Dong YD, Zhao TY (2012) Detection and widespread distribution of sodium channel alleles characteristic of insecticide resistance in Culex pipiens complex mosquitoes in China. Med Vet Entomol 26:228–232

    Article  PubMed  Google Scholar 

  • WHO (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Health Organization, Geneva

    Google Scholar 

  • Yan L, Yang P, Jiang F, Cui N, Ma E, Qiao C, Cui F (2012) Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families. BMC Genom 13:609

    Article  CAS  Google Scholar 

  • Yang T, Liu N (2011) Genome analysis of cytochrome P450s and their expression profles in insecticide resistant mosquitoes Culex quinquefasciatus. PLoS One 6:e29418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang G, Wang J, Ji Z, Liu Z, Pi X, Chen C (2013) Characterization and comparative analyses of muscle transcriptomes in Dorper and small-tailed Han sheep using RNA-Seq technique. PLoS One 8:e72686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YL, Wang YM, Wang LH, Yao J, Guo HF, Fang JC (2016) Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén). Pestic Biochem Physiol 127:21–27

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang N, Ma PF, Liu Q, Li DZ, Guo ZH (2013) Statistical summary of contigs and final transcripts assembled by Trinity and TGICL. Plos One 10:23

    Google Scholar 

  • Zhu M, Yu M, Zhao S (2009) Understanding quantitative genetics in the systems biology era. Int J Biol Sci 5(2):161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou FF, Guo Q, Sun Y, Zhou D, Hu MX, Hu HX, Liu BQ, Tian MM, Liu XM, Li XX, Ma L, Shen B, Zhu CL (2016) Identification of protease m1 zinc metalloprotease conferring resistance to deltamethrinby characterization of an AFLP marker in Culex pipiens pallens. Parasit Vectors 9:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Meng-Xue Hu for her assistance with mosquito collection.

Funding

This study was funded by the National Natural Science Foundation of China (Grant numbers 81471984, 81672056, 81672058 and 81772227), the National Institutes of Health (NIH) of the USA (Grant number 2R01AI075746) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

BS, C-LZ and NX conceived the study. NX collected the data and performed the experiment. X-HS performed the data analysis. Z-HL performed the supplementary experiment duiring revision. YX, DZ and YS supported the development of the statistical methodology. NX and BS drafted the manuscript. All authors critically reviewed, read and approved the final manuscript.

Corresponding authors

Correspondence to Bo Shen or Chang-Liang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Sun, XH., Liu, ZH. et al. Identification and classification of differentially expressed genes in pyrethroid-resistant Culex pipiens pallens. Mol Genet Genomics 294, 861–873 (2019). https://doi.org/10.1007/s00438-018-1521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1521-7

Keywords

Navigation