Skip to main content
Log in

The effects of CXCL10 polymorphisms on COPD susceptibility

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The polymorphisms of cytokine genes has been reported to modulate the individual’s susceptibility to environmental stimuli in COPD development. C–X–C motif chemokine 10 (CXCL10) mediates recruitment inflammatory cells such as monocytes. Therefore, it may play a key role in COPD. Here, a case–control study was conducted to evaluate the association between CXCL10 tag-SNPs and COPD risk. Four tag-SNPs including rs4256246, rs4508917, rs56061981, and rs56316945 were identified based on the linkage disequilibrium (LD) analysis in 30 healthy controls. The associations between these four tag-SNPs and COPD risk were further evaluated in 480 COPD cases and 488 controls. We found that the “T” allele of rs56061981 was significantly associated with reducing risk of COPD, while “G” allele of rs56316945 was significantly associated with increasing risk of COPD. SNP rs56316945 was significantly associated with increasing risk of COPD under different models except recessive model after adjusting the sex, age, pack year, and biomass. SNP rs56061981 was significantly associated with decreasing COPD risk under different models except recessive model after adjusting the sex, age, pack year, and biomass. Stratified analysis of smoking status and biomass with SNPs supported rs56061981 may interact with biomass and smoking thus modulate COPD susceptibility and rs56216945 was apparently associated with the severity of pulmonary function of COPD patients. This study suggests that rs56061981 and rs56216945 in CXCL10 gene promoter contribute COPD susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agresti A (2012) ACDA 3rd edn. Willey, New York

    Google Scholar 

  • Assad NA, Kapoor V, Sood A (2016) Biomass smoke exposure and chronic lung disease. Curr Opin Pulm Med 22(2):150–157

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, Boutaoui N, Klanderman BJ, Sylvia JS, Ziniti JP, Hersh CP et al (2010) Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 42(3):200–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly LE, Barnes PJ (2006) Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci 27(10):546–553

    Article  CAS  PubMed  Google Scholar 

  • Fletcher C, Peto R (1977) The natural history of chronic airflow obstruction. Br Med J 1(6077):1645–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghio AJ, Soukup JM, Case M, Dailey LA, Richards J, Berntsen J et al (2012) Exposure to wood smoke particles produces inflammation in healthy volunteers. Occup Environ Med 69(3):170–175

    Article  PubMed  Google Scholar 

  • Hogg JC, McDonough JE, Sanchez PG, Cooper JD, Coxson HO, Elliott WM et al (2009) Micro-computed tomography measurements of peripheral lung pathology in chronic obstructive pulmonary disease. Proc Am Thorac Soc 6(6):546–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingebrigtsen T, Thomsen SF, Vestbo J, van der Sluis S, Kyvik KO, Silverman EK et al (2010) Genetic influences on chronic obstructive pulmonary disease—a twin study. Respir Med 104(12):1890–1895

    Article  PubMed  Google Scholar 

  • Klich I, Fendler W, Wyka K, Mlynarski W (2011) Effect of the IP10 (CXCL10) and HLA genotype on the risk of type 1 diabetes in children. Pediatr Endocrinol Diabetes Metab 17(1):10–13

    CAS  PubMed  Google Scholar 

  • Krimmer D, Ichimaru Y, Burgess J, Black J, Oliver B (2013) Exposure to biomass smoke extract enhances fibronectin release from fibroblasts. PLoS One 8(12):e83938

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez AD, Shibuya K, Rao C, Mathers CD, Hansell AL, Held LS et al (2006) Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J 27(2):397–412

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Zheng Z, Chen X, Tan H, Wang J, Zhang Z et al (2016) Study design and interim outcomes of Guangzhou Institute of Respiratory Disease COPD Biobank. COPD 13(2):203–213

    Article  PubMed  Google Scholar 

  • Luster AD, Unkeless JC, Ravetch JV (1985) Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315(6021):672–676

    Article  CAS  PubMed  Google Scholar 

  • Luster AD, Jhanwar SC, Chaganti RS, Kersey JH, Ravetch JV (1987) Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc Natl Acad Sci USA 84(9):2868–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC (2002) Chronic obstructive pulmonary disease surveillance—United States, 1971–2000. Respir Care 47(10):1184–1199

    PubMed  Google Scholar 

  • McCloskey SC, Patel BD, Hinchliffe SJ, Reid ED, Wareham NJ, Lomas DA (2001) Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am J Respir Crit Care Med 164(8 Pt 1):1419–1424

    Article  CAS  PubMed  Google Scholar 

  • Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349(9064):1498–1504

    Article  CAS  PubMed  Google Scholar 

  • Pauwels RA, Rabe KF (2004) Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 364(9434):613–620

    Article  PubMed  Google Scholar 

  • Pillai SG, Ge D, Zhu G, Kong X, Shianna KV, Need AC et al (2009) A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet 5(3):e1000421

    Article  PubMed  PubMed Central  Google Scholar 

  • Quint JK, Donaldson GC, Goldring JJ, Baghai-Ravary R, Hurst JR, Wedzicha JA (2010) Serum IP-10 as a biomarker of human rhinovirus infection at exacerbation of COPD. Chest 137(4):812–822

    Article  CAS  PubMed  Google Scholar 

  • Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176(6):532–555

    Article  PubMed  Google Scholar 

  • Rennard SI (2004) Treatment of stable chronic obstructive pulmonary disease. Lancet 364(9436):791–802

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Barnes PJ (2010) Is exposure to biomass smoke the biggest risk factor for COPD globally? Chest 138(1):3–6

    Article  PubMed  Google Scholar 

  • Sethi JM, Rochester CL (2000) Smoking and chronic obstructive pulmonary disease. Clin Chest Med 21(1):67–86 (viii)

    Article  CAS  PubMed  Google Scholar 

  • Singanayagam A, Glanville N, Bartlett N, Johnston S (2015) Effect of fluticasone propionate on virus-induced airways inflammation and anti-viral immune responses in mice. Lancet 385(Suppl 1):S88

    Article  PubMed  Google Scholar 

  • Skevaki CL, Christodoulou I, Spyridaki IS, Tiniakou I, Georgiou V, Xepapadaki P et al (2009) Budesonide and formoterol inhibit inflammatory mediator production by bronchial epithelial cells infected with rhinovirus. Clin Exp Allergy 39(11):1700–1710

    Article  CAS  PubMed  Google Scholar 

  • Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929

    Article  CAS  PubMed  Google Scholar 

  • Sussan TE, Ingole V, Kim JH, McCormick S, Negherbon J, Fallica J et al (2014) Source of biomass cooking fuel determines pulmonary response to household air pollution. Am J Respir Cell Mol Biol 50(3):538–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang NL, Fan HP, Chang KC, Ching JK, Kong KP, Yew WW et al (2009) Genetic association between a chemokine gene CXCL-10 (IP-10, interferon gamma inducible protein 10) and susceptibility to tuberculosis. Clin Chim Acta 406(1–2):98–102

    Article  CAS  PubMed  Google Scholar 

  • Teramoto S, Ishii T, Yamamoto H, Yamaguchi Y, Matsuse T (2005) Xenobiotic enzymes and genetics of COPD. Chest 127(1):408–409 (author reply 9)

    Article  PubMed  Google Scholar 

  • Trajkov D, Mirkovska-Stojkovikj J, Petlichkovski A, Strezova A, Efinska-Mladenovska O, Sandevska E et al (2009) Association of cytokine gene polymorphisms with chronic obstructive pulmonary disease in Macedonians. Iran J Allergy Asthma Immunol 8(1):31–42

    CAS  PubMed  Google Scholar 

  • Van Pottelberge GR, Bracke KR, Joos GF, Brusselle GG (2009) The role of dendritic cells in the pathogenesis of COPD: liaison officers in the front line. COPD 6(4):284–290

    Article  PubMed  Google Scholar 

  • Warwick G, Thomas PS, Yates DH (2013) Non-invasive biomarkers in exacerbations of obstructive lung disease. Respirology 18(5):874–884

    Article  PubMed  Google Scholar 

  • Weiss ST (2010) Lung function and airway diseases. Nat Genet 42(1):14–16

    Article  CAS  PubMed  Google Scholar 

  • Wilson N, Driss A, Solomon W, Dickinson-Copeland C, Salifu H, Jain V, et al (2013) CXCL10 gene promoter polymorphism – 1447A > G correlates with plasma CXCL10 levels and is associated with male susceptibility to cerebral malaria. PLoS One 8(12):e81329

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong M, Wang J, Guo M, Zhou Q, Lu W (2016) TRPM8 genetic variations associated with COPD risk in the Chinese Han population. Int J Chron Obstruct Pulm Dis 11:2563–2571

    Article  Google Scholar 

  • Zou Y, Li S, Zou W, Hu G, Zhou Y, Peng G et al (2014) Upregulation of gelatinases and epithelial-mesenchymal transition in small airway remodeling associated with chronic exposure to wood smoke. PLoS One 9(5):e96708

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenju Lu.

Ethics declarations

Funding

This study was funded by National Precision Medicine Foundation (No. 2016YFC0903700).

Conflict of interest

All the authors declare that they have no conflict of interest. We are grateful to the COPD patients and control subjects for their participation in this study. We also thank the clinicians and hospital staff who contributed to the sample and data collection.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Committee of The First Affiliated Hospital (GZMC2009-08-1336).

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, Q., Dong, L. et al. The effects of CXCL10 polymorphisms on COPD susceptibility. Mol Genet Genomics 293, 649–655 (2018). https://doi.org/10.1007/s00438-017-1408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1408-z

Keywords

Navigation