Skip to main content
Log in

Substrate translocation involves specific lysine residues of the central channel of the conjugative coupling protein TrwB

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Conjugative transfer of plasmid R388 requires the coupling protein TrwB for protein and DNA transport, but their molecular role in transport has not been deciphered. We investigated the role of residues protruding into the central channel of the TrwB hexamer by a mutational analysis. Mutations affecting lysine residues K275, K398, and K421, and residue S441, all facing the internal channel, affected transport of both DNA and the relaxase protein in vivo. The ATPase activity of the purified soluble variants was affected significantly in the presence of accessory protein TrwA or DNA, correlating with their behaviour in vivo. Alteration of residues located at the cytoplasmic or the inner membrane interface resulted in lower activity in vivo and in vitro, while variants affecting residues in the central region of the channel showed increased DNA and protein transfer efficiency and higher ATPase activity, especially in the absence of TrwA. In fact, these variants could catalyze DNA transfer in the absence of TrwA under conditions in which the wild-type system was transfer deficient. Our results suggest that protein and DNA molecules have the same molecular requirements for translocation by Type IV secretion systems, with residues at both ends of the TrwB channel controlling the opening–closing mechanism, while residues embedded in the channel would set the pace for substrate translocation (both protein and DNA) in concert with TrwA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen WJ, Corey RA, Oatley P, Sessions RB, Baldwin SA, Radford SE, Tuma R, Collinson I (2016) Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. Elife 5:e15598

    PubMed  PubMed Central  Google Scholar 

  • Atmakuri K, Cascales E, Christie PJ (2004) Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Banta LM, Kerr JE, Cascales E, Giuliano ME, Bailey ME, McKay C, Chandran V, Waksman G, Christie PJ (2011) An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J Bacteriol 193:2566–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer T, Rosch T, Itaya M, Graumann PL (2011) Localization pattern of conjugation machinery in a Gram-positive bacterium. J Bacteriol 193:6244–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabezon E, de la Cruz F (2006) TrwB: an F(1)-ATPase-like molecular motor involved in DNA transport during bacterial conjugation. Res Microbiol 157:299–305

    Article  CAS  PubMed  Google Scholar 

  • Cabezon E, Lanza VF, Arechaga I (2012) Membrane-associated nanomotors for macromolecular transport. Curr Opin Biotechnol 23:537–544

    Article  CAS  PubMed  Google Scholar 

  • Cabezon E, Ripoll-Rozada J, Pena A, de la Cruz F, Arechaga I (2015) Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 39:81–95

    PubMed  Google Scholar 

  • Cabezón E, Sastre JI, de la Cruz F (1997) Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254:400–406

    Article  PubMed  Google Scholar 

  • Cabezón E, Lanza VF, Arechaga I (2011) Membrane-associated nanomotors for macromolecular transport. Curr Opin Biotechnol 23:537–544

    Article  PubMed  Google Scholar 

  • Campbell JL, Richardson CC, Studier FW (1978) Genetic recombination and complementation between bacteriophage T7 and cloned fragments of T7 DNA. Proc Natl Acad Sci USA 75:2276–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Christie PJ (2004) Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci USA 101:17228–17233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhang X, Manias D, Yeo HJ, Dunny GM, Christie PJ (2008) Enterococcus faecalis PcfC, a spatially-localized substrate receptor for type IV secretion of the pCF10 transfer intermediate. J Bacteriol 190:3632–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie PJ (2016) The mosaic type IV secretion systems. EcoSal Plus 7:1–22

    Google Scholar 

  • de la Cruz F, Frost LS, Meyer RJ, Zechner EL (2010) Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34:18–40

    Article  PubMed  Google Scholar 

  • de Paz HD, Larrea D, Zunzunegui S, Dehio C, de la Cruz F, Llosa M (2010) Functional dissection of the conjugative coupling protein TrwB. J Bacteriol 192:2655–2669

    Article  PubMed  PubMed Central  Google Scholar 

  • Draper O, César CE, Machón C, de la Cruz F, Llosa M (2005) Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. Proc Natl Acad Sci USA 102:16385–16390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang H, Jing P, Haque F, Guo P (2012) Role of channel lysines and the “push through a one-way valve” mechanism of the viral DNA packaging motor. Biophys J 102:127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-González E, de Paz HD, Alperi A, Agúndez L, Faustmann M, Sangari FJ, Dehio C, Llosa M (2011) Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J Bacteriol 193:6257–6265

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilmour MW, Gunton JE, Lawley TD, Taylor DE (2003) Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol Microbiol 49:105–116

    Article  CAS  PubMed  Google Scholar 

  • Gomis-Rüth FX, Moncalián G, Pérez-Luque R, González A, Cabezón E, de la Cruz F, Coll M (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641

    Article  PubMed  Google Scholar 

  • Gomis-Rüth FX, Moncalián G, de la Cruz F, Coll M (2002) Conjugative plasmid protein TrwB, an integral membrane type IV secretion system coupling protein. Detailed structural features and mapping of the active site cleft. J Biol Chem 277:7556–7566

    Article  PubMed  Google Scholar 

  • Gonzalez-Prieto C, Agundez L, Llosa M (2015) Chloramphenicol selection of IS10 transposition in the cat promoter region of widely used cloning vectors. PLoS One 10:e0138615

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Rivera C, Bhatty M, Christie PJ (2016) Mechanism and function of type IV secretion during infection of the human host. Microbiol Spectr. doi:10.1128/microbiolspec

    PubMed  PubMed Central  Google Scholar 

  • Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielmini J, de la Cruz F, Rocha EP (2013) Evolution of conjugation and type IV secretion systems. Mol Biol Evol 30:315–331

    Article  CAS  PubMed  Google Scholar 

  • Hepp C, Maier B (2016) Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. Proc Natl Acad Sci USA 113:12467–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hormaeche I, Alkorta I, Moro F, Valpuesta JM, Goñi FM, de la Cruz F (2002) Purification and properties of TrwB, a hexameric, ATP-binding integral membrane protein essential for R388 plasmid conjugation. J Biol Chem 277:46456–46462

    Article  CAS  PubMed  Google Scholar 

  • Hormaeche I, Iloro I, Arrondo JL, Goni FM, de la Cruz F, Alkorta I (2004) Role of the transmembrane domain in the stability of TrwB, an integral protein involved in bacterial conjugation. J Biol Chem 279:10955–10961

    Article  CAS  PubMed  Google Scholar 

  • Hormaeche I, Segura RL, Vecino AJ, Goni FM, de la Cruz F, Alkorta I (2006) The transmembrane domain provides nucleotide binding specificity to the bacterial conjugation protein TrwB. FEBS Lett 580:3075–3082

    Article  CAS  PubMed  Google Scholar 

  • Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–38

    Google Scholar 

  • Jakubowski SJ, Cascales E, Krishnamoorthy V, Christie PJ (2005) Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187:3486–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurik A, Hausser E, Kutter S, Pattis I, Prassl S, Weiss E, Fischer W (2010) The coupling protein Cagbeta and its interaction partner CagZ are required for type IV secretion of the Helicobacter pylori CagA protein. Infect Immun 78:5244–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kainov DE, Tuma R, Mancini EJ (2006) Hexameric molecular motors: P4 packaging ATPase unravels the mechanism. Cell Mol Life Sci 63:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192:4923–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai EM, Chesnokova O, Banta LM, Kado CI (2000) Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182:3705–3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL (2011) An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 82:1071–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrea D, de Paz HD, Arechaga I, de la Cruz F, Llosa M (2013) Structural independence of conjugative coupling protein TrwB from its Type IV secretion machinery. Plasmid 70:146–153

    Article  CAS  PubMed  Google Scholar 

  • Lawley TD, Gilmour MW, Gunton JE, Standeven LJ, Taylor DE (2002) Functional and mutational analysis of conjugative transfer region 1 (Tra1) from the IncHI1 plasmid R27. J Bacteriol 184:2173–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721

    Article  CAS  PubMed  Google Scholar 

  • Li F, Alvarez-Martinez C, Chen Y, Choi KJ, Yeo HJ, Christie PJ (2012a) Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding. J Bacteriol 194:4041–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Li C, Sarkar S, Zhang J, Witham S, Zhang Z, Wang L, Smith N, Petukh M, Alexov E (2012b) DelPhi: a comprehensive suite for DelPhi software and associated resources. BMC Biophys 5:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Llosa M, de la Cruz F (2005) Bacterial conjugation: a potential tool for genomic engineering. Res Microbiol 156:1–6

    Article  CAS  PubMed  Google Scholar 

  • Llosa M, Bolland S, Grandoso G, de la Cruz F (1994) Conjugation-independent, site-specific recombination at the oriT of the IncW plasmid R388 mediated by TrwC [published erratum appears in J Bacteriol 1994 Oct; 176(20):6414]. J Bacteriol 176:3210–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llosa M, Gomis-Rüth F-X, Coll M, de la Cruz F (2002) Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 45:1–8

    Article  CAS  PubMed  Google Scholar 

  • Llosa M, Zunzunegui S, de la Cruz F (2003) Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci USA 100:10465–10470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Wong JJ, Edwards RA, Manchak J, Frost LS, Glover JN (2008) Structural basis of specific TraD–TraM recognition during F plasmid-mediated bacterial conjugation. Mol Microbiol 70:89–99

    Article  CAS  PubMed  Google Scholar 

  • Mackerell AD Jr, Feig M, Brooks CL 3rd (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  PubMed  Google Scholar 

  • Matilla I, Alfonso C, Rivas G, Bolt EL, de la Cruz F, Cabezon E (2010) The conjugative DNA translocase TrwB is a structure-specific DNA-binding protein. J Biol Chem 285:17537–17544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  PubMed  Google Scholar 

  • Moncalian G, de la Cruz F (2004) DNA binding properties of protein TrwA, a possible structural variant of the Arc repressor superfamily. Biochim Biophys Acta 1701:15–23

    Article  CAS  PubMed  Google Scholar 

  • Moncalian G, Cabezon E, Alkorta I, Valle M, Moro F, Valpuesta JM, Goni FM, de La Cruz F (1999) Characterization of ATP and DNA binding activities of TrwB, the coupling protein essential in plasmid R388 conjugation. J Biol Chem 274:36117–36124

    Article  CAS  PubMed  Google Scholar 

  • Moncalián G, Grandoso G, Llosa M, de la Cruz F (1997) oriT-processing and regulatory roles of TrwA protein in plasmid R388 conjugation. J Mol Biol 270:188–200

    Article  PubMed  Google Scholar 

  • Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5:892–899

    Article  CAS  PubMed  Google Scholar 

  • Pena A, Matilla I, Martin-Benito J, Valpuesta JM, Carrascosa JL, de la Cruz F, Cabezon E, Arechaga I (2012) The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 287:39925–39932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripoll-Rozada J, Zunzunegui S, de la Cruz F, Arechaga I, Cabezon E (2013) Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J Bacteriol 195:4195–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadler JR, Tecklenburg M, Betz JL (1980) Plasmids containing many tandem copies of a synthetic lactose operator. Gene 8:279–300

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sastre JI, Cabezón E, de la Cruz F (1998) The carboxyl terminus of protein TraD adds specificity and efficiency to F-plasmid conjugative transfer. J Bacteriol 180:6039–6042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder G, Krause S, Zechner EL, Traxler B, Yeo HJ, Lurz R, Waksman G, Lanka E (2002) TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates? J Bacteriol 184:2767–2779

    Article  PubMed  PubMed Central  Google Scholar 

  • Schröder G, Schülein R, Quebatte M, Dehio C (2011) Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. Proc Natl Acad Sci USA 108:14643–14648

    Article  PubMed  PubMed Central  Google Scholar 

  • Segura RL, Aguila-Arcos S, Ugarte-Uribe B, Vecino AJ, de la Cruz F, Goni FM, Alkorta I (2014) Subcellular location of the coupling protein TrwB and the role of its transmembrane domain. Biochim Biophys Acta 1838:223–230

    Article  CAS  PubMed  Google Scholar 

  • Tato I, Zunzunegui S, de la Cruz F, Cabezón E (2005) TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci USA 102:8156–8161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tato I, Matilla I, Arechaga I, Zunzunegui S, de la Cruz F, Cabezon E (2007) The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA: implications for a common assembly mechanism of DNA translocating motors. J Biol Chem 282:25569–25576

    Article  CAS  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  PubMed  Google Scholar 

  • Vecino AJ, Segura RL, Ugarte-Uribe B, Aguila S, Hormaeche I, de la Cruz F, Goni FM, Alkorta I (2010) Reconstitution in liposome bilayers enhances nucleotide binding affinity and ATP-specificity of TrwB conjugative coupling protein. Biochim Biophys Acta 1798:2160–2169

    Article  CAS  PubMed  Google Scholar 

  • Vecino AJ, de la Arada I, Segura RL, Goni FM, de la Cruz F, Arrondo JL, Alkorta I (2011) Membrane insertion stabilizes the structure of TrwB, the R388 conjugative plasmid coupling protein. Biochim Biophys Acta 1808:1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Article  CAS  PubMed  Google Scholar 

  • Wallden K, Williams R, Yan J, Lian PW, Wang L, Thalassinos K, Orlova EV, Waksman G (2012) Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci USA 109:11348–11353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warwicker J, Watson HC (1982) Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol 157:671–679

    Article  CAS  PubMed  Google Scholar 

  • Whitaker N, Chen Y, Jakubowski SJ, Sarkar MK, Li F, Christie PJ (2015) The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J Bacteriol 197:2335–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker N, Berry TM, Rosenthal N, Gordon JE, Gonzalez-Rivera C, Sheehan KB, Truchan HK, VieBrock L, Newton IL, Carlyon JA, Christie PJ (2016) Chimeric coupling proteins mediate transfer of heterologous type IV effectors through the Escherichia coli pKM101-encoded conjugation machine. J Bacteriol 198:2701–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Khisamutdinov E, Schwartz C, Guo P (2013) Mechanism of one-way traffic of hexameric phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. ACS Nano 7:4082–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Sandra Barral and Stephanie Siegmund (University of Columbia, NY, USA) for assistance with statistical analysis and English editing of the manuscript, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matxalen Llosa.

Ethics declarations

Funding

This work was supported by Grants BIO2013-46414-P, BFU2016-78521-R, and BFU2014-55534-C2-1-P from the Spanish Ministry of Economy and Competitiveness to ML, EC, and FdlC, respectively. GL acknowledges funding from NIH Grants GM030518, S10OD012351, and S10OD021764. DL was a recipient of a predoctoral fellowship from CSIC (JAE-PRE). DLG-H and IM were recipients of predoctoral fellowships from the University of Cantabria.

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by D. Andersson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larrea, D., de Paz, H.D., Matilla, I. et al. Substrate translocation involves specific lysine residues of the central channel of the conjugative coupling protein TrwB. Mol Genet Genomics 292, 1037–1049 (2017). https://doi.org/10.1007/s00438-017-1331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1331-3

Keywords

Navigation