Skip to main content
Log in

Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Caleosins are a class of Ca2+ binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. ‘RY-repeat’ elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen J, Leach N, Ferguson S (2005) The histidine of the c-type cytochrome CXXCH haem-binding motif is essential for haem attachment by the Escherichia coli cytochrome c maturation (Ccm) apparatus. Biochem J 389:587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabidopsis genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796

    Article  Google Scholar 

  • Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud J-P (2010) RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 51:1975–1987

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci 107:18724–18728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blée E, Flenet M, Boachon B, Fauconnier ML (2012) A non-canonical caleosin from Arabidopsis efficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity. FEBS J 279:3981–3995

    Article  PubMed  Google Scholar 

  • Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule J-J (2014) The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. Plant Physiol 166:109–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants thematic review series: lipid droplet synthesis and metabolism: from yeast to man. J Lipid Res 53:215–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JCF, Tsai CCY, Tzen JTC (1999) Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol 40:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Chyan C, Jiang P, Chen C, Tzen JTC (2012) The same oleosin isoforms are present in oil bodies of rice embryo and aleurone layer while caleosin exists only in those of the embryo. Plant Physiol Biochem 60:18–24

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezcurra I, Wycliffe P, Nehlin L, Ellerström M, Rask L (2000) Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J 24:57–66

    Article  CAS  PubMed  Google Scholar 

  • Frandsen GI, Mundy J, Tzen JTC (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant 112:301–307

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blée E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Pinzon I, Patel K, Murphy DJ (2001) The Brassica napus calcium-binding protein, caleosin, has distinct endoplasmic reticulum-and lipid body-associated isoforms. Plant Physiol Biochem 39:615–622

    Article  CAS  Google Scholar 

  • Higgins J, Magusin A, Trick M, Fraser F, Bancroft I (2012) Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics 13:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu L, Li S, Gao W (2013) Expression, divergence and evolution of the caleosin gene family in Brassica rapa. Arch Biol Sci 65:863–876

    Article  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Wang Y, Zhu B, Fang T, Fang Y, Wang Y (2015) Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids. BMC Plant Biol 15:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d’Andréa S, Chardot T, Nesi N (2009) Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9:3268–3284

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Binns D, Chang H, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katavic V, Agrawal GK, Hajduch M, Harris SL, Thelen JJ (2006) Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars. Proteomics 6:4586–4598

    Article  CAS  PubMed  Google Scholar 

  • Kim YY, Jung KW, Yoo KS, Jeung JU, Shin JS (2011) A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Plant Cell Physiol 52:874–884

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple mehod for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M (2012) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee T, Bretaña NA, Lu C (2011) PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity. BMC Bioinform 12:261

    Article  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP (2013) Acyl-lipid metabolism. The Arabidopsis book/American Society of Plant Biologists 11

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomascolo A, Uzan-Boukhris E, Sigoillot J-C, Fine F (2012) Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl Microbiol Biotechnol 95:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (2002) Gene duplication and evolution. Science 297:945–947

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Zhao J (2010) Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot 61:2647–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGlew K, Shaw V, Zhang M, Kim RJ, Yang W, Shorrosh B, Suh MC, Ohlrogge J (2015) An annotated database of Arabidopsis mutants of acyl lipid metabolism. Plant Cell Rep 34:519–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ (2009) Plant lipids: biology, utilisation and manipulation. Wiley, New York

    Google Scholar 

  • Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585

    Article  CAS  PubMed  Google Scholar 

  • Næsted H, Frandsen GI, Jauh G-Y, Hernandez-Pinzon I, Nielsen HB, Murphy DJ, Rogers JC, Mundy J (2000) Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol 44:463–476

    Article  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Pang S, Lynn DA, Lo JY, Paek J, Curran SP (2014) SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation. Nat Commun 5:5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    Article  CAS  PubMed  Google Scholar 

  • Poxleitner M, Rogers SW, Lacey Samuels A, Browse J, Rogers JC (2006) A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J 47:917–933

    Article  CAS  PubMed  Google Scholar 

  • Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Shen Y, Xie J, Liu R, Ni X, Wang X, Li Z, Zhang M (2014) Genomic analysis and expression investigation of caleosin gene family in Arabidopsis. Biochem Biophys Res Commun 448:365–371

    Article  CAS  PubMed  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci 92:7719–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:W609–W612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong C, Wang X, Yu J, Wu J, Li W, Huang J, Dong C, Hua W, Liu S (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 14:689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toorop PE, Barroco RM, Engler G, Groot SP, Hilhorst HW (2005) Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds. Planta 221:637–647

    Article  CAS  PubMed  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lai K, Tai P, Li W (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S, Liu Y, Hua W, Liu S (2013) Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 14:664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31270295) and funding provided by Northwest A&F University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhixi Li or Meng Zhang.

Additional information

Communicated by S. Hohmann.

Y. Shen and M. Liu have contributed equally to this publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental table 1

Caleosin genes in A. lyrata, B. rapa, B. oleracea and B. napus (XLS 42 kb)

Supplemental Fig. 1

Multiple alignments of caleosins in A. thaliana, A. lyrata, B. rapa, B. oleracea and B. napus. H-form insertion, calcium binding motif and proline-knot domains are boxed with red lines. Putative phosphorylation sites of L-caleosins are marked by a blue box. Putative phosphorylation sites of H-caleosins are marked by a green box. Five fully conserved residues are shown by an upper red circle. The highly conserved histidine sites were indicated by black arrows (PDF 508 kb)

Supplemental Fig. 2

Hydrophobicity and the folding prediction of two Arabidopsis caleosins AtCLO1 (AT4G26740) and AtCLO3 (AT2G33380) (PDF 105 kb)

Supplemental table 2, 3, 4, 5

Expression data of caleosin genes in different tissues using RNA-seq and ESTs in B. rapa and B. oleracea, and ESTs in B. napus. EST libraries used to construct the synthetic libraries in three Brassica species are also shown (XLS 95 kb)

Supplemental table 6

Potential cis-elements of crucial B. napus caleosin genes predicted by PLACE and PlantCARE (XLS 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Liu, M., Wang, L. et al. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies. Mol Genet Genomics 291, 971–988 (2016). https://doi.org/10.1007/s00438-015-1156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1156-x

Keywords

Navigation