Skip to main content
Log in

The Xer/dif site-specific recombination system of Campylobacter jejuni

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Chromosome dimers, which form during the bacterial life cycle, represent a problem that must be solved by the bacterial cell machinery so that chromosome segregation can occur effectively. The Xer/dif site-specific recombination system, utilized by most bacteria, resolves chromosome dimers into monomers using two tyrosine recombinases, XerC and XerD, to perform the recombination reaction at the dif site which consists of 28–30 bp. However, single Xer recombinase systems have been recently discovered in several bacterial species. In Streptococci and Lactococci a single recombinase, XerS, is capable of completing the monomerisation reaction by acting at an atypical dif site called dif SL (31 bp). It was recently shown that a subgroup of ε-proteobacteria including Campylobacter spp. and Helicobacter spp. had a phylogenetically distinct Xer/dif recombination system with only one recombinase (XerH) and an atypical dif motif (difH). In order to biochemically characterize this system in greater detail, Campylobacter jejuni XerH was purified and its DNA-binding activity was characterized. The protein showed specific binding to the complete difH site and to both halves separately. It was also shown to form covalent complexes with difH suicide substrates. In addition, XerH was able to catalyse recombination between two difH sites located on a plasmid in Escherichia coli in vivo. This indicates that this XerH protein performs a similar function as the related XerS protein, but shows significantly different binding characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allos BM (2001) Campylobacter jejuni infections: update on emerging issues and trends. Clin Inf Dis 32(8):1201–1206. doi:10.1086/319760

    Article  CAS  Google Scholar 

  • Bigot S, Sivanathan V, Possoz C, Barre F-X, Cornet F (2007) FtsK, a literate chromosome segregation machine. Mol Microbiol 64(6):1434–1441. doi:10.1111/j.1365-2958.2007.05755.x

    Article  PubMed  CAS  Google Scholar 

  • Blakely GW, Sherratt DJ (1994) Interactions of the site-specific recombinases XerC and XerD with the recombination site dif. Nucleic Acids Res 22(25):5613–5620

    Article  PubMed  CAS  Google Scholar 

  • Blakely GW, Sherratt DJ (1996) Determinants of selectivity in Xer site-specific recombination. Gene Dev 10:762–773. doi:10.1101/gad.10.6.762

    Article  PubMed  CAS  Google Scholar 

  • Blakely G, Colloms S, May G, Burke M, Sherratt D (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3(8):789–798

    PubMed  CAS  Google Scholar 

  • Blakely G, May G, McCulloch R, Arciszewska LK, Burke ME, Lovett ST, Sherratt DJ (1993) Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75(2):351–361

    Article  PubMed  CAS  Google Scholar 

  • Carnoy C, Roten CA (2009) The dif/Xer recombination systems in proteobacteria. PLoS ONE 4(9):e6531. doi:10.1371/journal.pone.0006531

    Article  PubMed  Google Scholar 

  • Chang AC, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134(3):1141–1156

    PubMed  CAS  Google Scholar 

  • Colloms SD, McCulloch R, Grant K, Neilson L, Sherratt DJ (1996) Xer-mediated site-specific recombination in vitro. EMBO J 15(5):1172–1181

    PubMed  CAS  Google Scholar 

  • Cortez D, Quevillon-Cheruel S, Gribalso S, Desnoues N, Sezonov G, Forterre P, Serre MC (2010) Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genet 6(10):e1001166. doi:10.1371/journal.pgen.1001166

    Article  PubMed  Google Scholar 

  • Debowski AW, Carnoy C, Verburgghe P, Nilsson HO, Gauntlett JC, Fulurija A, Camilleri T, Berg DE, Marshall BJ, Benghezal M (2012) Xer recombinase and genome integrity in Helicobacter pylori, a pathogen without topoisomerase IV. PLoS ONE 7(4):e33310. doi:10.1371/journal.pone.0033310

    Article  PubMed  CAS  Google Scholar 

  • Duggin IG, Dubarry N, Bell SD (2011) Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus. EMBO J 30(1):145–153. doi:10.1038/emboj.2010.301

    Article  PubMed  CAS  Google Scholar 

  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Ann Rev Biochem 75:567–605. doi:10.1146/annurev.biochem.73.011303.073908

    Article  PubMed  CAS  Google Scholar 

  • Jouan L, Szatmari G (2003)  Interactions of the Caulobacter crescentus XerC and XerD recombinases with the E. coli dif site.  FEMS Microbiol Lett 222(2):257–262

  • Le Bourgeois P, Bugarel M, Campo N, Daveran-Mignot ML, Labonté J, Lanfranchi D, Lautier T, Pagès C, Ritzenthaler P (2007) The unconventional Xer recombination machinery of Streptococci/Lactococci. PLoS Genet 3(7):e117. doi:10.1371/journal.pgen.0030117

    Article  PubMed  Google Scholar 

  • Lee L, Sadowski PD (2001) Directional resolution of synthetic holliday structures by the Cre recombinase. J Biol Chem 276(33):31092–31098. doi:10.1074/jbc.M103739200

    Article  PubMed  CAS  Google Scholar 

  • Leroux M, Jia F, Szatmari G (2011) Characterization of the Streptococcus suis XerS recombinase and its unconventional cleavage of the difSL site. FEMS Microbiol Lett 324(2):135–141. doi:10.1111/j.1574-6968.2011.02398.x

    Article  PubMed  CAS  Google Scholar 

  • Lesterlin C, Barre FX, Cornet F (2004) Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Micro 54(5):1151–1160. doi:10.1111/j.1365-2958.2004.04356.x

    Article  CAS  Google Scholar 

  • McCulloch R, Coggins LW, Colloms SD, Sherratt DJ (1994) Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo. EMBO J 13(8):1844–1855

    PubMed  CAS  Google Scholar 

  • Nolivos S, Pages C, Rousseau P, Le Bourgeois P, Cornet F (2010) Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase. Nucleic Acids Res 38(19):6477–6489. doi:10.1093/nar/gkq507

    Article  PubMed  CAS  Google Scholar 

  • Recchia GD, Aroyo M, Wolf D, Blakely G, Sherratt DJ (1999) FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J 18(20):5724–5734. doi:10.1093/emboj/18.20.5724

    Article  PubMed  CAS  Google Scholar 

  • Ringrose L, Lounnas V, Erlich L, Buchholz F, Wade R, Stewart AF (1998) Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination. J Mol Biol 284(2):363–384. doi:10.1006/jmbi.1998.2149

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Palacios GM (2007) The health burden of Campylobacter infection and the impact of antimicrobial resistance: playing chicken. Clin Inf Dis 44(5):701–703. doi:10.1086/509936

    Article  Google Scholar 

  • Sherratt DJ (2003) Bacterial chromosome dynamics. Science 301(5634):780–785. doi:10.1126/science.1084780

    Article  PubMed  CAS  Google Scholar 

  • Sivanathan V, Allen MD, de Bekker C, Baker R, Arciszewska LK, Freund SM, Bycroft M, Löwe J, Sheratt DJ (2006) The FtsK gamma domain directs oriented DNA translocation by interacting with KOPS. Nat Struct Mol Biol 13(11):965–972. doi:10.1038/nsmb1158

    Article  PubMed  CAS  Google Scholar 

  • Sivanathan V, Emerson JE, Pages C, Cornet F, Sherratt DJ, Arciszewska LK (2009) KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation. Mol Microbiol 71(4):1031–1042. doi:10.1111/j.1365-2958.2008.06586.x

    Article  PubMed  CAS  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expres Purif 41(1):207–234

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19(3):259–268

    Article  PubMed  CAS  Google Scholar 

  • Zakova N, Szatmari GB (1995) Site-specific recombination between ColE1 cer and NTP16 nmr sites in vivo. Mol Gen Genet 247(4):509–514

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jérémy Barbosa Ferreira and Alexandra Gustinelli for their assistance and advice, and David Sherratt for his generous gift of strain DS9041. This work was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada and the Faculté des études supérieures et post-doctorales de l’Université de Montréal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Szatmari.

Additional information

Communicated by A. Aguilera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 273 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leroux, M., Rezoug, Z. & Szatmari, G. The Xer/dif site-specific recombination system of Campylobacter jejuni . Mol Genet Genomics 288, 495–502 (2013). https://doi.org/10.1007/s00438-013-0765-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0765-5

Keywords

Navigation