Skip to main content
Log in

Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Burkholderia glumae is the major causal agent of bacterial panicle blight of rice, a growing disease problem in global rice production. To better understand its genome-scale characteristics, the genome of the highly virulent B. glumae strain 336gr-1 isolated from Louisiana, USA was sequenced using the Illumina Genome Analyser II system. De novo assembled 336gr-1 contigs were aligned and compared with the previously sequenced genome of B. glumae strain BGR1, which was isolated from an infected rice plant in South Korea. Comparative analysis of the whole genomes of B. glumae 336gr-1 and B. glumae BGR1 revealed numerous unique genomic regions present only in one of the two strains. These unique regions contained accessory genes including mobile elements and phage-related genes, and some of the unique regions in B. glumae BGR1 corresponded to predicted genomic islands. In contrast, little variation was observed in known and potential virulence genes between the two genomes. The considerable amount of plasticity largely based on accessory genes and genome islands observed from the comparison of the genomes of these two strains of B. glumae may explain the versatility of this bacterial species in various environmental conditions and geographic locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJM (2009) De novo transcriptome assembly with ABySS. Bioinformatics 25:2872–2877

    Article  PubMed  CAS  Google Scholar 

  • Bocsanczy AM, Nissinen RM, Oh CS, Beer SV (2008) HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol 9:425–434

    Article  PubMed  CAS  Google Scholar 

  • Dalca AV, Brudno M (2010) Genome variation discovery with high-throughput sequencing data. Brief Bioinform 11:3–14

    Article  PubMed  CAS  Google Scholar 

  • Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, Kim J, Hwang I, Venturi V (2007) Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73:4950–4958

    Article  PubMed  CAS  Google Scholar 

  • Gao F, Zhang CT (2006) GC-Profile: a web-based tool for visualizing and analyzing the variation of GC content in genomic sequences. Nucleic Acids Res 34(Web Server issue): W686–691

    Google Scholar 

  • Ham JH, Melanson RA, Rush MC (2011) Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12:329–339

    Article  PubMed  CAS  Google Scholar 

  • Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-Tarraga AM, Thomson NR, Bason N, Quail MA, Sharp S, Cherevach I, Churcher C, Goodhead I, Hauser H, Holroyd N, Mungall K, Scott P, Walker D, White B, Rose H, Iversen P, Mil-Homens D, Rocha EP, Fialho AM, Baldwin A, Dowson C, Barrell BG, Govan JR, Vandamme P, Hart CA, Mahenthiralingam E, Parkhill J (2009) The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191:261–277

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Xie G, Lo CC, Starkenburg SR, Chain PS (2011) Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics. Brief Funct Genomics 10:322–333

    Article  PubMed  CAS  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  PubMed  CAS  Google Scholar 

  • Karki HS, Shrestha BK, Han JW, Groth DE, Barphagha IK, Rush MC, Melanson RA, Kim BS, Ham JH (2012) Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae. PLoS ONE 7(9):e45376

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim JG, Kang Y, Jang JY, Jog GJ, Lim JY, Kim S, Suga H, Nagamatsu T, Hwang I (2004) Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54:921–934

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kang Y, Choi O, Jeong Y, Jeong JE, Lim JY, Kim M, Moon JS, Suga H, Hwang I (2007) Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol Microbiol 64:165–179

    Article  PubMed  CAS  Google Scholar 

  • Langille MG, Brinkman FS (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25:664–665

    Article  PubMed  CAS  Google Scholar 

  • Langille MG, Hsiao WW, Brinkman FS (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinform 9:329

    Article  Google Scholar 

  • Lessie TG, Hendrickson W, Manning BD, Devereux R (1996) Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144:117–128

    Article  PubMed  CAS  Google Scholar 

  • Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform 11:473–483

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I (2009) Complete genome sequence of Burkholderia glumae BGR1. J Bacteriol 191:3758–3759

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, Brendel V, Bogdanove AJ (2008) Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas. PLoS ONE 3:e3828

    Article  PubMed  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  PubMed  CAS  Google Scholar 

  • Petnicki-Ocwieja T, van Dijk K, Alfano JR (2005) The hrpK operon of Pseudomonas syringae pv. tomato DC3000 encodes two proteins secreted by the type III (Hrp) protein secretion system: HopB1 and HrpK, a putative type III translocator. J Bacteriol 187:649–663

    Article  PubMed  CAS  Google Scholar 

  • Slater GS, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinform 6:31

    Article  Google Scholar 

  • Smits TH, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant-Microbe Interact 23:384–393

    Article  PubMed  CAS  Google Scholar 

  • Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Sawada H, Suzuki F, Matsuda I (1997) Specific detection of Burkholderia plantarii and B. glumae by PCR using primers selected from the 16S–23S rDNA spacer regions. Ann Phytopathol Soc Jpn 63:455–462

    Article  CAS  Google Scholar 

  • Tsushima S (1996) Epidemiology of bacterial grain rot of rice caused by Pseudomonas glumae. JARQ 30:85–89

    Google Scholar 

  • Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinform 7:142

    Article  Google Scholar 

  • Winsor GL, Khaira B, Van Rossum T, Lo R, Whiteside MD, Brinkman FS (2008) The Burkholderia genome database: facilitating flexible queries and comparative analyses. Bioinformatics 24:2803–2804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Louisiana State University Agricultural Center, the Research and Development Program of the Louisiana Board of Regents Support Fund (LEQSF(2008-11)-RD-A-02) and the Louisiana Rice Research Board. We thank Rebecca A. Melanson, Ruoxi Chen, and Bishnu Shrestha for critical review of this manuscript. We also thank Dr. Ingyu Hwang for providing genomic DNA of B. glumae BGR1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyun Ham.

Additional information

Communicated by A. M. Hirsch.

F. Francis and J. Kim contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, F., Kim, J., Ramaraj, T. et al. Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands. Mol Genet Genomics 288, 195–203 (2013). https://doi.org/10.1007/s00438-013-0744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0744-x

Keywords

Navigation