Skip to main content
Log in

Cloning and molecular characterization of putative invertase inhibitor genes and their possible contributions to cold-induced sweetening of potato tubers

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Invertase inhibitors (InvInh) interacted with invertases (Inv) and inhibited their activities involved in reducing sugars (RS) accumulation in cold-stored potato tubers. Understanding their potential contribution to RS accumulation is of both theoretical and practical importance because RS accumulation is a costly postharvest problem for both potato producers and processors. In this study, four genes with significant sequence homology to NtInvInhs were identified from potato and their possible contributions to cold-induced sweetening (CIS) of tubers were investigated together with StInv1, an acid invertase gene previously clarified corresponsive to CIS. Transcripts analysis of these StInvInhs and StInv1 among six potato genotypes with distinct CIS sensitivity indicated that StInvInh2 had a negative power regression to RS increase of the cold-stored tubers while a positive linear regression was obtained with StInv1. The relative expression ratio calculated by StInv1/StInvInh2 performed a very significant correlation to RS accumulation, suggesting a possible interaction between StInv1 and StInvInh2 in response to CIS. The bimolecular fluorescence complementation visualized the interaction between StInv1 and StInvInh2A and with StInvInh2B in both onion epidermal cells and tobacco BY-2 cells and demonstrated that these two inhibitors may be the isoforms of StInvInh2 as the counterparts of StInv1. The recombinant StInvInh2B protein inhibited the activities of soluble acid invertase indicating evidently its inhibitory properties. Our results strongly suggest that the interaction between StInv1 and StInvInh2 may play critical roles in controlling the CIS through posttranslational regulation of StInv1 by StInvInh2 in potato tubers and will provide novel tools and resources for improving CIS tolerance of potatoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BiFC:

Bimolecular fluorescence complementation

CIS:

Cold-induced sweetening

InvInh:

Invertase inhibitor

RS:

Reducing sugar

References

  • Bate NJ, Niu X, Wang Y, Reimann KS, Helentjaris TG (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 134(1):246–254

    Article  CAS  PubMed  Google Scholar 

  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeune-maitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  CAS  PubMed  Google Scholar 

  • Bonfig KB, Berger S, Fatima T, Gonzlez MC, Roitsch T (2007) Metabolic control of seedling development by invertases. Funct Plant Biol 34(6):508–516

    Article  CAS  Google Scholar 

  • Cheng SH, Su ZH, Xie C, Liu J (2004) Effects of variation in activities of starch-sugar metabolic enzymes on reducing sugar accumulation and processing quality of potato tubers. Agri Sci China 3(7):519–527

    Google Scholar 

  • Eason JR, Ryan DJ, Watson LM, Pinkney T, Hedderley D, Christey MC, Braun RH, Coupe SA (2007) Suppressing expression of a soluble acid invertase (BoINV2) in broccoli (Brassica oleracea) delays postharvest floret senescence and downregulates cysteine protease (BoCP5) transcription. Physiol Plant 130(1):46–57

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Glaczinski H, Heibges A, Salamini F, Gebhardt C (2002) Members of the Kunitz-type protease inhibitor gene family of potato inhibit soluble tuber invertase in vitro. Potato Res 45:163–176

    Article  CAS  Google Scholar 

  • Greiner S, Krausgrill S, Rausch T (1998) Cloning of a tobacco apoplasmic invertase inhibitor proof of function of the recombinant protein and expression analysis during plant development. Plant Physiol 116(2):733–742

    Article  CAS  PubMed  Google Scholar 

  • Greiner S, Rausch T, Sonnewald U, Herbers K (1999) Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol 17:708–711

    Article  CAS  PubMed  Google Scholar 

  • Hothorn M, D’Angelo I, Marquez JA, Greiner S, Scheffzek K (2004) The invertase inhibitor Nt-CIF from tobacco: a highly thermostable four-helix bundle with an unusual N-terminal extension. J Mol Biol 335:987–995

    Article  CAS  PubMed  Google Scholar 

  • Huang LF, Bocock PN, Davis JM, Koch KE (2007) Regulation of invertase: a suite of transcriptional and post-transcriptional mechanisms. Funct Plant Biol 34(6):499–507

    Article  CAS  Google Scholar 

  • Isherwood FA (1973) Starch-sugar interconversion in Solanum tuberosum. Phytochemistry 12(11):2579–2591

    Article  CAS  Google Scholar 

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Ni D-A, Ruan Y-L (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell 21(7):2072–2089

    Article  CAS  PubMed  Google Scholar 

  • Klann EM, Hall B, Bennett AB (1996) Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 112(3):1321–1330

    Article  CAS  PubMed  Google Scholar 

  • Link M, Rausch T, Greiner S (2004) In Arabidopsis thaliana, the invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Lett 573:105–109

    Article  CAS  PubMed  Google Scholar 

  • Long JC, Zhao W, Rashotte AM, Muday GK, Huber SC (2002) Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiol 128(2):591–602

    Article  CAS  PubMed  Google Scholar 

  • Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M (2004) Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res 117(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • McKenzie M, Sowokinos J, Shea I, Gupta S, Lindlauf R, Anderson J (2005) Investigations on the role of acid invertase and UDP-glucose pyrophosphorylase in potato clones with varying resistance to cold-induced sweetening. Am J Potato Res 82(3):231–239

    Article  CAS  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic tree on personal computer. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pressey R, Shaw R (1966) Effect of temperature on invertase, invertase inhibitor, and sugars in potato tubers. Plant Physiol 41(10):1657–1661

    Article  CAS  PubMed  Google Scholar 

  • Proels RK, Roitsch T (2009) Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. J Exp Bot 1555–1567

  • Rausch T, Greiner S (2004) Plant protein inhibitors of invertases. BBA Prot Proteom 1696(2):253–261

    Article  CAS  Google Scholar 

  • Reca IB, Brutus A, D’Avino R, Villard C, Bellincampi D, Giardina T (2008) Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato (Solanum lycopersicum) and its use to purify a vacuolar invertase. Biochimie 90(11–12):1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Richardson DL, Davies HV, Ross HA, Mackay GR (1990) Invertase activity and its relation to hexose accumulation in potato tubers. J Exp Bot 41(1):95–99

    Article  CAS  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9(12):606–613

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz H, Vogel R, Greiner S, Rausch T (2001) In wounded sugar beet (Beta vulgaris L.) tap-root, hexose accumulation correlates with the induction of a vacuolar invertase isoform. J Exp Bot 52(365):2381–2385

    Article  CAS  PubMed  Google Scholar 

  • Schwimmer S, Makower RU, Rorem ES (1961) Invertase and invertase inhibitor in potato. Plant Physiol 36(3):313–316

    Article  CAS  PubMed  Google Scholar 

  • Sowokinos JR (2001) Biochemical and molecular control of cold-induced sweetening in potatoes. Am J Potato Res 78:221–236

    Article  CAS  Google Scholar 

  • Sturm A (1999) Invertases primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25(24):4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Timmermans MCP, Maliga P, Vieira J, Messing J (1990) The pFF plasmids: cassettes utilising CaMV sequences for expression of foreign genes in plants. J Biotechnol 14(3):333–344

    Article  CAS  PubMed  Google Scholar 

  • von Arnim A (2007) Subcellular localization of GUS- and GFP-tagged proteins in onion epidermal cells. Cold Spring Harb Protoc 3:pdb.prot4689

  • Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Coleman WK, Meng FR, Bonierbale M, Li XQ (2009) Relationship between glucose accumulation and activities of acid invertase and its inhibitors in potatoes under simulated commercial conditions. Potato J 36:35–44

    Google Scholar 

  • Yang J, Song B, Li Y, Liu J (2006) A simple and efficient method for RNA extraction from potato tuber. J Agric Biotechnol 14(2):297–298

    CAS  Google Scholar 

  • Zhang C (2007) Study on starch–sugar metabolism of potato tubers by suppression of an acid invertase gene transcripts. Dissertation, Huazhong Agricultural University

  • Zrenner R, Schüler K, Sonnewald U (1996) Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198(2):246–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Joachim Messing donating the pFF19GUS vector. This study was supported partially by A-base funding from Agriculture and Agri-Food Canada, the National High Technology Research and Development (863) Program of China (2006AA100107), and the National Natural Science Foundation of China (30571181 and 30800754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Communicated by C. Gebhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 5995 kb)

Supplementary material 2 (TIFF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Song, B., Zhang, H. et al. Cloning and molecular characterization of putative invertase inhibitor genes and their possible contributions to cold-induced sweetening of potato tubers. Mol Genet Genomics 284, 147–159 (2010). https://doi.org/10.1007/s00438-010-0554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0554-3

Keywords

Navigation