Skip to main content
Log in

Null mutations in Drosophila Optomotor-blind affect T-domain residues conserved in all Tbx proteins

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The T-box transcription factors TBX2 and TBX3 are overexpressed in many human cancers raising the need for a thorough understanding of the cellular function of these proteins. In Drosophila, there is one corresponding ortholog, Optomotor-blind (Omb). Currently, only two missense mutations are known for the two human proteins. Making use of the developmental defects caused by inactivation of omb, we have isolated and molecularly characterized four new omb mutations, three of them are missense mutations of amino acids fully conserved in all Tbx proteins. We interpret the functional defects in the framework of the known structure of the human TBX3 protein and provide evidence for loss of Omb DNA-binding activity in all three newly identified missense mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreou AM, Pauws E, Jones MC, Singh MK, Bussen M, Doudney K, Moore GE, Kispert A, Brosens JJ, Stanier P (2007) TBX22 missense mutations found in patients with X-linked cleft palate affect DNA binding, sumoylation, and transcriptional repression. Am J Hum Genet 81:700–712

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M (1989) Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Bamshad M, Lin RC, Law DJ, Watkins WS, Krakowiak PA, Moore ME, Fransceschini P, Lala R, Holmes LB, Gebuhr TC, Bruneau BG, Schinzel A, Seidman JG, Seidman CE, Jorde LB (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16:311–315

    Article  PubMed  CAS  Google Scholar 

  • Bamshad M, Le T, Watkins WS, Dixon ME, Kramer BE, Roeder AD, Carey JC, Root S, Schinzel A, Van Maldergem L, Gardner RJ, Lin RC, Seidman CE, Seidman JG, Wallerstein R, Moran E, Sutphen R, Campbell CE, Jorde LB (1999) The spectrum of mutations in TBX3: genotype/phenotype relationship in ulnar-mammary syndrome. Am J Hum Genet 64:1550–1562

    Article  PubMed  CAS  Google Scholar 

  • Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE (1997) Mutations in human cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–34

    Article  PubMed  CAS  Google Scholar 

  • Basson CT, Huang T, Lin RC, Bachinsky DR, Weremowicz S, Vaglio A, Bruzzone R, Quadrelli R, Lerone M, Romeo G, Silengo M, Pereira A, Krieger J, Mesquita SF, Kamisago M, Morton CC, Pierpont ME, Muller CW, Seidman JG, Seidman CE (1999) Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci USA 96:2919–2924

    Article  PubMed  CAS  Google Scholar 

  • Bilican B, Goding CR (2006) Cell cycle regulation of the T-box transcription factor tbx2. Exp Cell Res 312:2358–2366

    Article  PubMed  CAS  Google Scholar 

  • Bollag RJ, Siegfried Z, Cebra-Thomas JA, Garvey N, Davison EM, Silver LM (1994) An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nat Genet 7:383–389

    Article  PubMed  CAS  Google Scholar 

  • Bongers EM, Duijf PH, van Beersum SE, Schoots J, Van Kampen A, Burckhardt A, Hamel BC, Losan F, Hoefsloot LH, Yntema HG, Knoers NV, van Bokhoven H (2004) Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet 74:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Brassington AM, Sung SS, Toydemir RM, Le T, Roeder AD, Rutherford AE, Whitby FG, Jorde LB, Bamshad MJ (2003) Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet 73:74–85

    Article  PubMed  CAS  Google Scholar 

  • Braybrook C, Doudney K, Marcano AC, Arnason A, Bjornsson A, Patton MA, Goodfellow PJ, Moore GE, Stanier P (2001) The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet 29:179–183

    Article  PubMed  CAS  Google Scholar 

  • Brunner A, Wolf R, Pflugfelder GO, Poeck B, Heisenberg M (1992) Mutations in the proximal region of the optomotor-blind locus of Drosophila melanogaster reveal a gradient of neuroanatomical and behavioural phenotypes. J. Neurogenet 8:43–55

    Article  PubMed  CAS  Google Scholar 

  • Brunner E, Brunner D, Fu W, Hafen E, Basler K (1999) The dominant mutation Glazed is a gain-of-function allele of wingless that, similar to loss of APC, interferes with normal eye development. Dev Biol 206:178–188

    Article  PubMed  CAS  Google Scholar 

  • Carlson H, Ota S, Campbell CE, Hurlin PJ (2001) A dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that cause ulnar-mammary syndrome. Hum Mol Genet 10:2403–2413

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    Article  PubMed  CAS  Google Scholar 

  • Chaabouni M, Smaoui N, Benneji N, M’Rad R, Jemaa LB, Hachicha S, Chaabouni H (2005) Mutation analysis of TBX22 reveals new mutation in Tunisian CPX family. Clin Dysmorphol 14:23–25

    Article  PubMed  Google Scholar 

  • Coll M, Seidman JG, Müller CW (2002) Structure of the DNA-bound T-box domain of human TBX3, a transcription factor responsible for ulnar-mammary syndrome. Structure (Camb) 10:343–356

    Article  CAS  Google Scholar 

  • Fan C, Liu M, Wang Q (2003) Functional analysis of TBX5 missense mutations associated with Holt-Oram syndrome. J Biol Chem 278:8780–8785

    Article  PubMed  CAS  Google Scholar 

  • Garnett AT, Han TM, Gilchrist MJ, Smith JC, Eisen MB, Wardle FC, Amacher SL (2009) Identification of direct T-box target genes in the developing zebrafish mesoderm. Development 136:749–760

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TK, Packham EA, Bonser AJ, Robinson TE, Cross SJ, Brook JD (2001) Characterization of the TBX5 binding site and analysis of mutations that cause Holt-Oram syndrome. Hum Mol Genet 10:1983–1994

    Article  PubMed  CAS  Google Scholar 

  • Gray PA, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk DI, Tsung EF, Cai Z, Alberta JA, Cheng LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowitch DH, Stiles CD, Ma Q (2004) Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306:2255–2257

    Article  PubMed  CAS  Google Scholar 

  • Grimm S, Pflugfelder GO (1996) Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271:1601–1603

    Article  PubMed  CAS  Google Scholar 

  • Habets PE, Moorman AF, Clout DE, van Roon MA, Lingbeek M, van Lohuizen M, Campione M, Christoffels VM (2002) Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev 16:1234–1246

    Article  PubMed  CAS  Google Scholar 

  • Halder G, Carroll SB (2001) Binding of the Vestigial co-factor switches the DNA-target selectivity of the Scalloped selector protein. Development 128:3295–3305

    PubMed  CAS  Google Scholar 

  • Heinritz W, Moschik A, Kujat A, Spranger S, Heilbronner H, Demuth S, Bier A, Tihanyi M, Mundlos S, Gruenauer-Kloevekorn C, Froster UG (2005a) Identification of new mutations in the TBX5 gene in patients with Holt-Oram syndrome. Heart 91:383–384

    Article  PubMed  CAS  Google Scholar 

  • Heinritz W, Shou L, Moschik A, Froster UG (2005b) The human TBX5 gene mutation database. Hum Mutat 26:397

    Article  PubMed  Google Scholar 

  • Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001) Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyer K, Kretzschmar D, Pflugfelder G (2008) optomotor-blind expression in glial cells is required for correct axonal projection across the Drosophila inner optic chiasm. Dev Biol 315:28–41

    Article  PubMed  CAS  Google Scholar 

  • Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442:533–538

    Article  PubMed  CAS  Google Scholar 

  • Kerscher S, Albert S, Wucherpfennig D, Heisenberg M, Schneuwly S (1995) Molecular and genetic analysis of the Drosophila mas-1 (mannosidase-1) gene which encodes a glycoprotein processing a-1,2 mannosidase. Dev Biol 168:613–626

    Article  PubMed  CAS  Google Scholar 

  • Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP, Waddell LB, Cole AD, Hayward C, Keogh A, Macdonald P, Griffiths L, Fatkin D, Sholler GF, Zorn AM, Feneley MP, Winlaw DS, Harvey RP (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291

    Article  PubMed  CAS  Google Scholar 

  • Kispert A, Herrmann BG (1993) The Brachyury gene encodes a novel DNA binding protein. EMBO J 12:3211–3220

    PubMed  CAS  Google Scholar 

  • Kispert A, Koschorz B, Herrmann BG (1995) The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J 14:4763–4772

    PubMed  CAS  Google Scholar 

  • Kopp A, Duncan I (1997) Control of cell fate and polarity in the abdominal segments of Drosophila by optomotor-blind. Development 124:3715–3726

    PubMed  CAS  Google Scholar 

  • Krause A, Zacharias W, Camarata T, Linkhart B, Law E, Lischke A, Miljan E, Simon HG (2004) Tbx5 and Tbx4 transcription factors interact with a new chicken PDZ-LIM protein in limb and heart development. Dev Biol 273:106–120

    Article  PubMed  CAS  Google Scholar 

  • Lausch E, Hermanns P, Farin HF, Alanay Y, Unger S, Nikkel S, Steinwender C, Scherer G, Spranger J, Zabel B, Kispert A, Superti-Furga A (2008) TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome. Am J Hum Genet 83:649–655

    Article  PubMed  CAS  Google Scholar 

  • Lingbeek ME, Jacobs JJ, van Lohuizen M (2002) The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem 277:26120–26127

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Shen A, Li X, Jiao W, Zhang X, Li Z (2008) T-box transcription factor TBX20 mutations in Chinese patients with congenital heart disease. Eur J Med Genet 51:580–587

    Article  PubMed  Google Scholar 

  • Macindoe I, Glockner L, Vukasin P, Stennard FA, Costa MW, Harvey RP, Mackay JP, Sunde M (2009) Conformational stability and DNA binding specificity of the cardiac T-box transcription factor Tbx20. J Mol Biol 389:606–618

    Google Scholar 

  • Marcano AC, Doudney K, Braybrook C, Squires R, Patton MA, Lees MM, Richieri-Costa A, Lidral AC, Murray JC, Moore GE, Stanier P (2004) TBX22 mutations are a frequent cause of cleft palate. J Med Genet 41:68–74

    Article  PubMed  CAS  Google Scholar 

  • Meneghini V, Odent S, Platonova N, Egeo A, Merlo GR (2006) Novel TBX3 mutation data in families with Ulnar-Mammary syndrome indicate a genotype-phenotype relationship: mutations that do not disrupt the T-domain are associated with less severe limb defects. Eur J Med Genet 49:151–158

    Article  PubMed  Google Scholar 

  • Minguillon C, Logan M (2003) The comparative genomics of T-box genes. Brief Funct Genom Proteom 2:224–233

    Article  CAS  Google Scholar 

  • Miyahara K, Suzuki N, Ishihara T, Tsuchiya E, Katsura I (2004) TBX2/TBX3 transcriptional factor homologue controls olfactory adaptation in Caenorhabditis elegans. J Neurobiol 58:392–402

    Article  PubMed  CAS  Google Scholar 

  • Morgan TH, Bridges CB (1916) Sex-linked inheritance in Drosophila. Carnegie Institution of Washington Publication no. 237, pp 1–88

  • Müller CW, Herrmann BG (1997) Crystallographic structure of the T domain-DNA complex of the Brachyury transcription factor. Nature 389:884–888

    Article  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genom Hum Genet 7:61–80

    Article  CAS  Google Scholar 

  • Packham EA, Brook JD (2003) T-box genes in human disorders. Hum Mol Genet 12:R37–R44

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou VE (2001) T-box genes in development: from hydra to humans. Int Rev Cytol 207:1–70

    Article  PubMed  CAS  Google Scholar 

  • Pflugfelder GO (2009) omb and circumstance. J Neurogenet 23:15–33

    Article  PubMed  CAS  Google Scholar 

  • Pflugfelder GO, Schwarz H, Roth H, Poeck B, Sigl A, Kerscher S, Jonschker B, Pak WL, Heisenberg M (1990) Genetic and molecular characterization of the optomotor-blind gene locus in Drosophila melanogaster. Genetics 126:91–104

    PubMed  CAS  Google Scholar 

  • Pflugfelder GO, Roth H, Poeck B (1992a) A homology domain shared between Drosophila melanogaster and mouse Brachyury is involved in DNA binding. Biochem Biophys Res Commun 186:918–925

    Article  PubMed  CAS  Google Scholar 

  • Pflugfelder GO, Roth H, Poeck B, Kerscher S, Schwarz H, Jonschker B, Heisenberg M (1992b) The lethal(1)optomotor-blind gene of Drosophila melanogaster is a major organizer of optic lobe development: isolation and characterization of the gene. Proc Natl Acad Sci USA 89:1199–1203

    Article  PubMed  CAS  Google Scholar 

  • Poeck B, Balles J, Pflugfelder GO (1993) Transcript identification in the optomotor-blind locus of Drosophila melanogaster by intragenic recombination mapping and PCR-aided sequence analysis of lethal point mutations. Mol Gen Genet 238:325–332

    Article  PubMed  CAS  Google Scholar 

  • Porsch M, Hofmeyer K, Bausenwein BS, Grimm S, Weber BHF, Miassod R, Pflugfelder GO (1998) Isolation of a Drosophila T-box gene closely related to human TBX1. Gene 212:237–248

    Article  PubMed  CAS  Google Scholar 

  • Porsch M, Sauer M, Schulze S, Bahlo A, Roth M, Pflugfelder GO (2005) The relative role of the T-domain and flanking sequences for developmental control and transcriptional regulation in protein chimeras of Drosophila OMB and ORG-1. Mech Dev 122:81–96

    Article  PubMed  CAS  Google Scholar 

  • Pulichino AM, Vallette-Kasic S, Couture C, Gauthier Y, Brue T, David M, Malpuech G, Deal C, Van Vliet G, De Vroede M, Riepe FG, Partsch CJ, Sippell WG, Berberoglu M, Atasay B, Drouin J (2003) Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency. Genes Dev 17:711–716

    Article  PubMed  CAS  Google Scholar 

  • Reamon-Buettner SM, Borlak J (2004) TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat 24:104

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR (2008) Tbx3 represses e-cadherin expression and enhances melanoma invasiveness. Cancer Res 68:7872–7881

    Article  PubMed  CAS  Google Scholar 

  • Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, Drummond J, Webster J, Gubb D, Gunton N, Johnson G, O’Kane CJ, Huen D, Sharma P, Asztalos Z, Baisch H, Schulze J, Kube M, Kittlaus K, Reuter G, Maroy P, Szidonya J, Rasmuson-Lestander A, Ekstrom K, Dickson B, Hugentobler C, Stocker H, Hafen E, Lepesant JA, Pflugfelder G, Heisenberg M, Mechler B, Serras F, Corominas M, Schneuwly S, Preat T, Roote J, Russell S (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167:797–813

    Article  PubMed  CAS  Google Scholar 

  • Sasaki G, Ogata T, Ishii T, Hasegawa T, Sato S, Matsuo N (2002) Novel mutation of TBX3 in a Japanese family with ulnar-mammary syndrome: implication for impaired sex development. Am J Med Genet 110:365–369

    Article  PubMed  Google Scholar 

  • Shen J, Dahmann C (2005) The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Dev Biol 279:31–43

    Article  PubMed  CAS  Google Scholar 

  • Shen J, Dorner C, Bahlo A, Pflugfelder GO (2008) optomotor-blind suppresses instability at the A/P compartment boundary of the Drosophila wing. Mech Dev 125:233–246

    Article  PubMed  CAS  Google Scholar 

  • Suphapeetiporn K, Tongkobpetch S, Siriwan P, Shotelersuk V (2007) TBX22 mutations are a frequent cause of non-syndromic cleft palate in the Thai population. Clin Genet 72:478–483

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Smith JC (2001) T-targets: clues to understanding the functions of T-box proteins. Dev Growth Differ 43:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson A (2003) Patterning the peripheral retina of the fly: decoding a gradient. Dev Cell 5:799–809

    Article  PubMed  CAS  Google Scholar 

  • Vallette-Kasic S, Couture C, Balsalobre A, Gauthier Y, Metherell L, Dattani M, Drouin J (2007) The TPIT gene mutation M86R associated with isolated adrenocorticotropin deficiency interferes with protein: protein interactions. J Clin Endocrinol Metab 92:3991–3999

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Bloomington Stock Center for Drosophila stocks, E. Jost for fly care, and Deutsche Forschungsgemeinschaft for grant Pf163/14-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert O. Pflugfelder.

Additional information

Communicated by T. Clandinin.

A. Sen and C. Gadomski contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, A., Gadomski, C., Balles, J. et al. Null mutations in Drosophila Optomotor-blind affect T-domain residues conserved in all Tbx proteins. Mol Genet Genomics 283, 147–156 (2010). https://doi.org/10.1007/s00438-009-0505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-009-0505-z

Keywords

Navigation