Skip to main content
Log in

The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Many plants synthesize and accumulate proline in response to osmotic stress conditions. A central enzyme in the proline biosynthesis is the bifunctional enzyme Δ1-pyrroline-5-carboxylate synthase (P5CS) that includes two functional catalytic domains: the γ-glutamyl kinase and the glutamic-γ-semialdehyde dehydrogenase. This enzyme catalyzes the first two steps of the proline biosynthetic pathway and plays a central role in the regulation of this process in plants. To determine the evolutionary events that occurred in P5CS genes, partial sequences from four Neotropical trees were cloned and compared to those of other plant taxa. Molecular phylogenetic analysis indicated that P5CS duplication events have occurred several times following the emergence of flowering plants and at different frequencies throughout the evolution of monocots and dicots. Despite the high number of conserved residues in plant P5CS sequences, positive selection was observed at different regions of P5CS paralogous genes and also when dicots and monocots were contrasted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    Article  PubMed  CAS  Google Scholar 

  • Briggs GC, Osmont KS, Shindo C, Sibout R, Hardtke CS (2006) Unequal genetic redundancies in Arabidopsis: a neglected phenomenon? Trends Plant Sci 11:492–498

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CJR (2005) Responses of Schizolobium amazonicum [S. parahyba var. Amazonicum] and Schizolobium parahyba [Schizolobium parahybum] plants to water stress. Arvore 29:907–914

  • Choudhary NL, Sairam RK, Tyagi A (2005) Expression of delta(1)-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian J Biochem Biophys 42:366–370

    PubMed  CAS  Google Scholar 

  • Csonka LN (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet 182:82–86

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dluzniewska P, Gessler A, Dietrich H, Schnitzler JP, Teuber M, Rennenberg H (2007) Nitrogen uptake and metabolism in Populus × canescens as affected by salinity. New Phytol 173:279–293

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:3

    Google Scholar 

  • Fabro G, Kovacs I, Pavet V, Szabados L, Alvarez ME (2004) Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact 17:343–350

    Article  PubMed  CAS  Google Scholar 

  • Farzaneh M, Jazi FR, Motamed N (2005) Application of dotblotting for detecting the expression of p5cs gene in transgenic olive plantlets. Febs J 272:547

    Google Scholar 

  • Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Delta(1)-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118:661–674

    Article  PubMed  CAS  Google Scholar 

  • Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A (1998) Isolation and characterization of two different cDNAs of Delta(1)-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol 38:755–764

    Article  PubMed  CAS  Google Scholar 

  • Goring H, Thien BH (1979) Influence of nutrient deficiency on proline accumulation in the cytoplasm of Zea mays seedlings. Biochem Physiol Pflanz 174:9–16

    Google Scholar 

  • Gruszka Vendruscolo EC, Schuster I, Pileggi M, Scapim CA, Correa Molinari HB, Marur CJ, Esteves Vieira LG (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  Google Scholar 

  • Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Van Son L, Roosens NH (2003) Proline accumulation and Delta(1)-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci 165:1059–1068

    Article  CAS  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 12:1129–1136

    Article  Google Scholar 

  • Hu CAA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (delta-1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    Article  PubMed  CAS  Google Scholar 

  • Hur J, Jung KH, Lee CH, An GH (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  • Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997) Characterization of the gene for delta-1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33:857–865

    Article  PubMed  CAS  Google Scholar 

  • Kishor PBK, Hong ZL, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of delta-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Mahan MJ, Csonka LN (1983) Genetic analysis of the proba genes of Salmonella typhimurium—physical and genetic analyses of the cloned proba genes of Escherichia coli and of a mutant allele that confers proline overproduction and enhanced osmotolerance. J Bacteriol 156:1249–1262

    PubMed  CAS  Google Scholar 

  • Orser CS, Goodner BW, Johnston M, Gelvin SB, Csonka LN (1988) The Escherichia coli prob gene corrects the proline auxotrophy of Saccharomyces cerevisiae pro1 mutants. Mol Gen Genet 212:124–128

    Article  PubMed  CAS  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Savoure A, Jaoua S, Hua XJ, Ardiles W, Vanmontagu M, Verbruggen N (1995) Isolation, characterization, and chromosomal location of a gene encoding the delta-1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM (1997) In search of molecular darwinism. Nature 385:111–112

    Article  PubMed  Google Scholar 

  • Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Aguero JA, Aguado-Santacruz GA, Jimenez-Bremont JF (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 46:82–92

    Article  PubMed  CAS  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt–stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  PubMed  CAS  Google Scholar 

  • Su J, Wu R (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci 166:941–948

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* phylogenetic analysis using parsimony. In. Sinauer Associates, Sunderland

    Google Scholar 

  • Szekely G, Abraham E, Cselo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Verdoy D, De la Pena TC, Redondo FJ, Lucas MM, Pueyo JJ (2006) Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ 29:1913–1923

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    PubMed  CAS  Google Scholar 

  • Zhang CS, Lu Q, Verma DPS (1995) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase: a bifunctional enzyme catalyzing the first 2 steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. S. Cavers for the critical reading of the manuscript and suggestions. This work was partially supported by a CNPq Grant (474993/2006-0) and the SEEDSOURCE project, funded by the European Commission under the Sixth Framework Programme (Contract number 003708) and coordinated by S. Cavers at the NERC Centre for Ecology and Hydrology, UK. Samples were provided by C. Navarro, P. Rymer, R. Griebel and S. Cavers. M. Margis-Pinheiro and R. Margis were supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brazil (308708/2006-7 and 302684/2005-0). A. Zolet received a Ph.D. fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogerio Margis.

Additional information

Communicated by K. Shirasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchetto-Zolet, A.C., Margis-Pinheiro, M. & Margis, R. The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Mol Genet Genomics 281, 87–97 (2009). https://doi.org/10.1007/s00438-008-0396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0396-4

Keywords

Navigation