Skip to main content
Log in

Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstracts

Comparative genomic and cDNA sequence analysis of ara h 2, a major peanut allergen, and a related conglutin ara h 6 were performed in Arachis hypogaea L. and its putative progenitors, Arachis duranensis and Arachis ipaensis. The complete identity between sequences encoding Ara h 2 isoforms demonstrated that these are homeologous genes and represent orthologs from diploid ancestors. Three copies of ara h 6 were identified in A. hypogaea, one of them located in the A-genome and the other two in the B-genome. Expression analysis showed higher levels of ara h 2 transcripts compared with ara h 6. Dual-labeled genomic in situ hybridization permitted identification of two subgenomes, each of which contained one pair of ara h 2-ara h 6 signals localized by fluorescence in situ hybridization. Characterization of genomic clones showed close genetic linkage between Ara h 2.02 and one copy of ara h 6 in the B-genome. The physical linkage may have arisen by tandem duplication and divergence of an ancestral gene. A gene duplication event specific to the B-genome progenitor has resulted in ara h 6 paralogs. These data provide further evidence for progenitor relationships and genomic organization of the conglutin gene family in the genus Arachis and could contribute to the development of a hypoallergenic peanut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Breiteneder H, Radauer C (2004) A classification of plant food allergens. J Allergy Clin Immunol 114(1):127–130

    Article  PubMed  Google Scholar 

  • Burks AW, Williams LW, Connaughton C, Cockrell G, O’Brien TJ, Helm RM (1992a) Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol 90:962–969

    Article  CAS  Google Scholar 

  • Burks AW, Williams LW, Thresher W, Connaughton C, Cockrell G, Helm RM (1992b) Allergenicity of peanut and soybean extracts altered by chemical or thermal denaturation in patients with atopic dermatitis and positive food challenges. J Allergy Clin Immunol 90:889–897

    Article  CAS  Google Scholar 

  • Burks AW, Shin D, Cockrell G, Stanley JS, Helm RM, Bannon GA (1997) Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem 245:334–339

    Article  PubMed  CAS  Google Scholar 

  • Burks W, Sampson HA, Bannon GA (1998) Peanut allergens. Allergy 53:725–730

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot (Lond) 92:107–127

    Article  CAS  Google Scholar 

  • Chatel JM, Bernard H, Orson FM (2003) Isolation and characterization of two complete Ara h 2 isoforms cDNA. Allergy Immunol 131:14–18

    Article  CAS  Google Scholar 

  • Dodo H, Konan K, Viquez O (2005) A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep 5:67–73

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ewing B, Hiller M, Wendl C, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assesment.Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fedak G, Han F (2005) Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet Genome Res 109:360–367

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Fukui K (1996) Plant chromosomes at mitosis. CRC Press, Boca, Raton, FL

    Google Scholar 

  • Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [ Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Gu Z, Nicolae D, Lu HH, Li WH (2002) Rapid divergence in expression between duplicated genes inferred from microarray data. Trends Genet 18:609–613

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  PubMed  CAS  Google Scholar 

  • Guerche P, Tire C, De Sa FG, De Clercq A, Van Montagu M, Krebbers E (1990) Differential expression of the Arabidopsis 2S albumin genes and the effect of increasing gene family size. Plant Cell 2:469–478

    Article  PubMed  CAS  Google Scholar 

  • Hales BJ, Bosco A, Mills KL, Hazell LA, Loh R, Holt PG, Thomas WR (2004) Isoforms of the major peanut allergen Ara h 2: IgE binding in children with peanut allergy. Int Arch Allergy Immunol 135:101–107

    Article  PubMed  CAS  Google Scholar 

  • Han FP, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T (2003) Characterization of six wheat x Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome 46:490–495

    Article  PubMed  CAS  Google Scholar 

  • Harberer G, Hindemitt T, Meyers BC, Mayer KEX (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022

    Article  PubMed  Google Scholar 

  • de Jong EC, Van Zijverden M, Spanhaak S, Koppelman SJ, Pellegrom H, Penninks AH (1998) Identification and partial characterization of multiple major allergens in peanut proteins. Clin Exp Allergy 28:743–751

    Article  PubMed  Google Scholar 

  • Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263:796–805

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Tate PL, Horn R, Kochert G, Moore K, Abbott AG (2003) The phylogenetic relationship of possible progenitors of the cultivated peanut. J Hered 94:334–340

    Article  PubMed  Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    Article  PubMed  CAS  Google Scholar 

  • Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M., Becker WM (1999) Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol 119:265–274

    Article  PubMed  CAS  Google Scholar 

  • Kochert G (1991) Restriction fragment length polymorphism in plants and its implications. Subcell Biochem 17:167–190

    PubMed  CAS  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence of the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Koppelman SJ, Vlooswijk RA, Knippels LM, Hessing M, Knol EF, van Reijsen FC, Bruijnzeel-Koomen CA (2001) Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy 56:132–137

    Article  PubMed  CAS  Google Scholar 

  • Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF (2004) Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy 34:583–590

    Article  PubMed  CAS  Google Scholar 

  • Koppelman SJ, de Jong GA, Laaper-Ertmann M, Peeters KA, Knulst AC, Hefle SL, Knol EF (2005) Purification and immunoglobulin E-binding properties of peanut allergen Ara h 6: evidence for cross-reactivity with Ara h 2. Clin Exp Allergy 35:490–497

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Dang P, Guo Z, He G, Holbrook CC, Bausher MG, Lee RD (2005) Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci 45:346–353

    Article  CAS  Google Scholar 

  • Marasek A, Hasterok R, Wiejacha K, Orlikowska T (2004) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7

    Article  PubMed  Google Scholar 

  • Morcillo F, Aberlenc-Bertossi F, Hamon S, Duval Y (1998) Differential accumulation of storage proteins, 7S globulins, during zygotic and somatic embryos development in oil palm (Elaeis guineensis Jacq.). Plant Physiol Biochem 36:509–514

    Article  CAS  Google Scholar 

  • Morcillo F, Hartmann C, Duval Y, Tregear JW (2001) Regulation of 7S globulin gene expression in zygotic and somatic embryos of oil palm. Physiol Plant 112:233–243

    Article  PubMed  CAS  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJ (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Ramos ML, Chu Y (2006) Hypoallergenic foods beyond infant formulas. In: Food allergy:comprehension, treatment, and prevention. ASM Press, Herndon, VA (in press)

  • Paik-Ro OG, Seih JC, Smith RL (2002) Seed-specific, developmentally regulated genes of peanut. Theor Appl Genet 104:236–240

    Article  PubMed  CAS  Google Scholar 

  • Pham TS, Rudner EJ (2000) Peanut allergy. Cutis 65:285–289

    PubMed  CAS  Google Scholar 

  • Pumphrey RSH, Wilson PB, Faragher EB, Edwards SR (1999) Specific immunoglobulin E to peanut, halzelnut and brazil nut in 731 patients: similar patterns found at all ages. Clin Exp Allergy 29:1256–1259

    Article  PubMed  CAS  Google Scholar 

  • Rabjohn P, Helm EM, Stanley JS, West CM, Sampson HA, Burks AW, Bannon GA (1999) Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Invest 103:535–542

    Article  PubMed  CAS  Google Scholar 

  • Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabacea) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Sambrook J, Fristch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. 2nd edn. Cold Spring harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Seijo JG, Lavia GI, Fernandez A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91(9):1294–1303

    Article  CAS  Google Scholar 

  • Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetics studies of putative genome donors. Euphytica 27:665–675

    Article  Google Scholar 

  • Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, Helm RM, West CM, Bannon GA (1997) Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys 342:244–253

    Article  PubMed  CAS  Google Scholar 

  • Suhr M, Wicklein D, Lepp U, Becker W-M (2004) Isolation and characterization of natural Ara h 6: Evidence for a further peanut allergen with putative clinical relevance based on resistance to pepsin digestion and heat. Mol Nutr Food Res 48:390–399

    Article  PubMed  CAS  Google Scholar 

  • Viquez OM, Summer CG, Dodo HW (2001) Isolation and molecular characterization of the first genomic clone of a major peanut allergen, Ara h 2. J Allergy Clin Immunol 107:713–717

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2000) Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. Proc Natl Acad Sci U S A 97:6579–6584

    Article  PubMed  CAS  Google Scholar 

  • Yan YS, Lin XD, Zhang YS, Wang L, Wu K, Huang SZ (2005) Isolation of peanut genes encoding arachins and conglutins by expressed sequence tags. Plant Sci 169:439–445

    Article  CAS  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a USDA-CSREES-administered special grant (00-34420-9178), the Georgia Peanut Commodity Commission and the Peanut Foundation. The authors thank Joann Conner for assistance with sequence analysis, Gunawati Gunawan for assistance with sequencing in house, Evelyn Morgan for assistance with embryo tissues, Shailendra Goel for assistance with image analysis and Anne Bell for her technical assistance. They also thank Bert Abbott, Clemson University, for providing peanut genomic and cDNA libraries and the Pratt Lab, UGA Athens Campus, for sequencing and bioinformatics support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Ozias-Akins.

Additional information

Communicated by R. Hagemann

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, M.L., Fleming, G., Chu, Y. et al. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Genet Genomics 275, 578–592 (2006). https://doi.org/10.1007/s00438-006-0114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0114-z

Keywords

Navigation