Skip to main content
Log in

OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We report the cDNA sequence and gene expression patterns of OsMADS22, a novel member of the STMADS11-like family of MADS-box genes, from rice. In contrast to previously reported STMADS11-like genes, whose expression is detected in vegetative tissues, OsMADS22 is mainly expressed during embryogenesis and flower development. In situ hybridization analysis revealed that OsMADS22 expression is localized in the L1 layer of embryos and in developing stamen primordia. Ectopic expression of OsMADS22 in transgenic rice plants resulted in aberrant floral morphogenesis, characterized by a disorganized palea, an elongated glume, and a two-floret spikelet. The results are discussed in terms of rice spikelet development and a novel non-vegetative role for a STMADS11-like gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–k
Fig. 4a–h
Fig. 5
Fig. 6a–c

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, de Pouplana LR, Martinez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333

    Article  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    Google Scholar 

  • Burgeff C, Liljegren SJ, Tapia-Lopez R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thalianaroots. Planta 214:365–372

    Article  Google Scholar 

  • Carmona MJ, Ortega N, Maroto FG (1998) Isolation and molecular characterization of a new vegetative MADS-box gene from Solanum tuberosum L Planta 207:181–188

    Article  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    CAS  PubMed  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interaction controlling flower development. Nature 353:31–37

    CAS  PubMed  Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23:567–581

    Article  Google Scholar 

  • García-Maroto F, Ortega N, Lozano R, Carmona MJ (2000) Characterization of the potato MADS-box gene STMADS16 and expression analysis in tobacco transgenic plants. Plant Mol Biol 42:499–513

    Article  Google Scholar 

  • Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    Article  Google Scholar 

  • Hiei Y, Ohota S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Mizuno K, Fujimura T (2002) Isolation of MADS box genes from sweet potato (Ipomoea batatas (L.) Lam.) expressed specifically in vegetative tissues. Plant Cell Physiol 43:314–322

    Article  Google Scholar 

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238:106–119

    Google Scholar 

  • Kouchi H, Sekine M, Hata S (1995) Distinct class of mitotic cyclins are differentially expressed in the soybean shoot apex during the cell cycle. Plant Cell 7:1143–1155

    Article  Google Scholar 

  • Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally related expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41:710–718

    CAS  PubMed  Google Scholar 

  • Lee S, Kim J, Son JS, Nam J, Jeong DH, Lee K, Jang S, Yoo J, Lee J, Lee DY, Kang HG, An G (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol 44:1403–1411

    Article  Google Scholar 

  • Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910–913

    Article  Google Scholar 

  • Matsuba K (1971) Mechanism of the development of deformed spikelets in Oryza sativa L. I. Morphoanalysis of deformed spikelets caused by gibberellin treatment. Jpn J Crop Sci 40:75–87

    Google Scholar 

  • Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874

    Article  Google Scholar 

  • Münster T, Deleu W, Wingen LU, Ouzunova M, Cacharrón J, Faigl W, Werth S, Kim JTT, Saedler H, Theissen G (2002) Maize MADS-box genes galore. Maydica 47:287–301

    Google Scholar 

  • Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989–1003

    Article  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Parenicová L, Folter SD, Kieffer M, Horner DS, Favalli C, Bussecher J, Cook HE, Ingaram RM, Kater MM, Davies B, Angenen GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcriptional factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  Google Scholar 

  • Passmore S, Maine GT, Elble R, Christ C, Tye BK (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells. J Mol Biol 204:593–606

    Article  Google Scholar 

  • Pelucchi N, Fornara F, Favalli C, Masiero S, Lago C, Pè EM, Colombo L, Kater MM (2002) Comparative analysis of rice MADS-box genes expressed during flower development. Sex Plant Reprod 15:113–122

    Article  Google Scholar 

  • Prakash AP, Kumar PP (2002) PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. Plant J 29:141–151

    Article  Google Scholar 

  • Sass AE (1958) Botanical microtechnique, 3rd edn. Iowa State University Press, Ames

    Google Scholar 

  • Schmitz J, Franzen R, Ngyuen TH, GarcÍa-Maroto F, Pozzi C, Salamini F, Rohde W (2000) Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42:899–913

    CAS  PubMed  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    CAS  Google Scholar 

  • Schweickerdt HG, Marais W (1956) Morphologische Untersuchungen an Oryza barthii A Chev. Bot Jahrbuch 77:1–24

    Google Scholar 

  • Sentoku N, Sato Y, Kurata N, Ito Y, Kitano H, Matsuoka M (1999) Regional expression of the rice KN1-type homeobox gene family during embryo, shoot, and flower development. Plant Cell 11:1651–1664

    Article  Google Scholar 

  • Takahashi M, Nagasawa N, Kitano H, Nagato Y (1998) panicle phytomer 1 mutations affect the panicle architecture of rice. Theor Appl Genet 96:1050–1056

    Article  Google Scholar 

  • Theiβen G, Saedler H (2001) Floral quartets. Nature 409:469–471

    Article  CAS  PubMed  Google Scholar 

  • Theiβen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Toki S, Takamatsu S, Nojiri C, Ooba S, Anzai H, Iwata M, Christensen AH, Quail PH, Uchimiya H (1992) Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants. Plant Physiol 100:1503–1507

    Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of flowering signals. Proc Natl Acad Sci USA 99:16336–16341

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Seiichi Toki for providing the pUBA plasmid and to Dr. Masaharu Kuroda for providing the pZH2 binary vector. We appreciate Dr. Dale Karlson’s careful reading of the manuscript. This work was supported by grants from the Ministry of Agriculture, Forestry, and Fisheries (Rice Genome Project MP2117b) to R.I. and by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists to N.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Sentoku.

Additional information

R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sentoku, N., Kato, H., Kitano, H. et al. OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy. Mol Genet Genomics 273, 1–9 (2005). https://doi.org/10.1007/s00438-004-1093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1093-6

Keywords

Navigation