Skip to main content

Advertisement

Log in

A reverse genetic approach for generating gene replacement mutants in Ustilago maydis

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

An Erratum to this article was published on 29 September 2004

Abstract

We describe a versatile strategy for generating gene replacement mutants in the phytopathogenic fungus Ustilago maydis. The system includes the choice of 32 different insertion cassettes for genetic engineering purposes, such as gene disruption and more sophisticated insertions of reporter genes, heterologous promoters or combinations of the two. PCR-amplified flanking sequences needed for homologous recombination are ligated to the respective insertion cassettes via Sfi I sites. As proof of principle we generated two replacement mutants in which the endogenous promoter of the pheromone gene mfa1 drives expression of the Green Fluorescent Protein gene (gfp). Simultaneously, expression of the mfa1 ORF is controlled either by the carbon source-regulated crg1 promoter or the nitrogen source-regulated nar1 promoter. In both cases gfp expression was pheromone-inducible and pheromone expression was only detected when the heterologous promoters were active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–D
Fig. 3A, B
Fig. 4A, B

Similar content being viewed by others

References

  • Banks GR, Shelton PA, Kanuga N, Holden DW, Spanos A (1993) The Ustilago maydis nar1 gene encoding nitrate reductase activity: sequence and transcriptional regulation. Gene 131:69–78

    Article  CAS  PubMed  Google Scholar 

  • Banuett F (1992) Ustilago maydis, the delightful blight. Trends Genet 8:174–180

    CAS  PubMed  Google Scholar 

  • Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29:179–208

    Article  CAS  PubMed  Google Scholar 

  • Banuett F, Herskowitz I (1989) Different a alleles are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci USA 86:5878–5882

    Google Scholar 

  • Barrett KJ, Gold SE, Kronstad JW (1993) Identification and complementation of a mutation to constitutive filamentous growth in Ustilago maydis. Mol Plant Microbe Interact 6:274–283

    CAS  PubMed  Google Scholar 

  • Basse CW, Kolb S, Kahmann R (2002) A maize-specifically expressed gene cluster in Ustilago maydis. Mol Microbiol 43:75–93

    Article  CAS  PubMed  Google Scholar 

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    CAS  PubMed  Google Scholar 

  • Bevan M, Barnes WM, Chilton MD (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385

    CAS  PubMed  Google Scholar 

  • Bölker M (2001) Ustilago maydis - a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401

    PubMed  Google Scholar 

  • Bölker M, Urban M, Kahmann R (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441–450

    Article  PubMed  Google Scholar 

  • Bottin A, Kämper J, Kahmann R (1996) Isolation of a carbon source-regulated gene from Ustilago maydis. Mol Gen Genet 253:342–352

    Article  CAS  PubMed  Google Scholar 

  • Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identification of genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Brachmann A, Schirawski J, Müller P, Kahmann R (2003) An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J 22:2199–2210

    Article  CAS  PubMed  Google Scholar 

  • Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882

    Google Scholar 

  • Davidson RC, Blankenship JR, Kraus PR, de Jesus Berrios M, Hull CM, D’Souza C, Wang P, Heitman J (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148:2607–2615

    CAS  PubMed  Google Scholar 

  • Gage MJ, Bruenn J, Fischer M, Sanders D, Smith TJ (2001) KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol Microbiol 41:775–785

    Article  CAS  PubMed  Google Scholar 

  • Garrido E, Pérez-Martín J (2003) The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol Microbiol 47:729–743

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  • Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bölker M, Kahmann R (1992) A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68:647–657

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A (1994) Yeast genes in search of functions. Nature 369:101–102

    Article  CAS  PubMed  Google Scholar 

  • Gold S, Duncan G, Barrett K, Kronstad J (1994a) cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 8:2805–2816

    CAS  PubMed  Google Scholar 

  • Gold SE, Bakkeren G, Davies JE, Kronstad JW (1994b) Three selectable markers for transformation of Ustilago maydis. Gene 142:225–230

    Article  CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1974) Ustilago maydis. In: King RC (ed) Handbook of genetics, vol 1. Plenum Press, New York, pp 575–595

  • Huber SM, Lottspeich F, Kämper J (2002) A gene that encodes a product with similarity to dioxygenases is highly expressed in teliospores of Ustilago maydis. Mol Genet Genomics 267:757–771

    Article  CAS  PubMed  Google Scholar 

  • Hull CM, Heitman J (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36:557–615

    Article  CAS  PubMed  Google Scholar 

  • Kaffarnik F, Müller P, Leibundgut M, Kahmann R, Feldbrügge M (2003) PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J 22:5817–5826

    Article  CAS  PubMed  Google Scholar 

  • Kahmann R, Steinberg G, Basse C, Feldbrügge M, Kämper J (2000) Ustilago maydis, the causative agent of corn smut disease. In: Kronstad JW (ed) Fungal pathology. Kluwer Academic Publishers, Dordrecht, pp 347–371

  • Kämper J (2004) A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Genet Genomics 271:103–110

    Article  PubMed  Google Scholar 

  • Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:73–83

    Article  PubMed  Google Scholar 

  • Keon JP, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet 19:475–481

    CAS  PubMed  Google Scholar 

  • Kojic M, Holloman WK (2000) Shuttle vectors for genetic manipulations in Ustilago maydis. Can J Microbiol 46:333–338

    Article  CAS  PubMed  Google Scholar 

  • Kojic M, Kostrub CF, Buchman AR, Holloman WK (2002) BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol Cell 10:683–691

    Article  CAS  PubMed  Google Scholar 

  • Kronstad JW (2003) Castles and cuitlacoche: the first international Ustilago conference. Fungal Genet Biol 38:265–271

    Article  CAS  PubMed  Google Scholar 

  • Kronstad JW, Leong SA (1990) The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev 4:1384–1395

    CAS  PubMed  Google Scholar 

  • Krügel H, Fiedler G, Smith C, Baumberg S (1993) Sequence and transcriptional analysis of the nourseothricin acetyltransferase-encoding gene nat1 from Streptomyces noursei. Gene 127:127–131

    Article  PubMed  Google Scholar 

  • Kuwayama H, Obara S, Morio T, Katoh M, Urushihara H, Tanaka Y (2002) PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res 30:e2

    Article  PubMed  Google Scholar 

  • Lorenz MC, Muir RS, Lim E, McElver J, Weber SC, Heitman J (1995) Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158:113–117

    Article  CAS  PubMed  Google Scholar 

  • Loubradou G, Brachmann A, Feldbrügge M, Kahmann R (2001) A homolog of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis. Mol Microbiol 40:719–730

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sánchez-Martínez C, Pérez-Martín J (2001) Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis - similar inputs, different outputs. Curr Opin Microbiol 4:214–221

    Article  PubMed  Google Scholar 

  • Schulz B, Banuett F, Dahl M, Schlesinger R, Schafer W, Martin T, Herskowitz I, Kahmann R (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60:295–306

    CAS  PubMed  Google Scholar 

  • Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW (1995) Green-fluorescent protein as a new vital marker in plant cells. Plant J 8:777–784

    Article  CAS  PubMed  Google Scholar 

  • Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones trigger filamentous growth in Ustilago maydis. EMBO J 13:1620–1627

    CAS  PubMed  Google Scholar 

  • Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet 252:503–509

    Article  CAS  PubMed  Google Scholar 

  • Straube A, Enard W, Berner A, Wedlich-Söldner R, Kahmann R, Steinberg G (2001) A split motor domain in a cytoplasmic dynein. EMBO J 20:5091–5100

    Article  CAS  PubMed  Google Scholar 

  • Szabó Z, Tönnis M, Kessler H, Feldbrügge M (2002) Structure-function analysis of lipopeptide pheromones from the plant pathogen Ustilago maydis. Mol Genet Genomics 268:362–370

    Article  CAS  PubMed  Google Scholar 

  • Timberlake WE, Marshall MA (1989) Genetic engineering of filamentous fungi. Science 244:1313–1317

    CAS  PubMed  Google Scholar 

  • Tsukuda T, Carleton S, Fotheringham S, Holloman WK (1988) Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol Cell Biol 8:3703–3709

    CAS  PubMed  Google Scholar 

  • Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G (2002) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 21:2946–2957

    Article  PubMed  Google Scholar 

  • Wendland J (2003) PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 44:115–123

    Article  CAS  PubMed  Google Scholar 

  • Williams SA, Halford SE (2001) Sfi I endonuclease activity is strongly influenced by the non-specific sequence in the middle of its recognition site. Nucleic Acids Res 29:1476–1483

    Article  CAS  PubMed  Google Scholar 

  • Winzeler EA, et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Yuan WM, Gentil GD, Budde AD, Leong SA (2001) Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J Bacteriol 183:4040–4051

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. R. Kahmann for critically reading the manuscript, and thank J. Hohenner, S. Hester and P. Roth for excellent technical assistance. This work was supported by the DFG through Sonderforschungsbereich 369 and by funding from Bayer CropScience

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Feldbrügge.

Additional information

Communicated by G. Jürgens

The first two authors contributed equally to this work

An erratum to this article is available at http://dx.doi.org/10.1007/s00438-004-1067-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brachmann, A., König, J., Julius, C. et al. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Genet Genomics 272, 216–226 (2004). https://doi.org/10.1007/s00438-004-1047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1047-z

Keywords

Navigation